aboutsummaryrefslogtreecommitdiffstats
path: root/python/sbp_fit.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/sbp_fit.py')
-rwxr-xr-xpython/sbp_fit.py34
1 files changed, 17 insertions, 17 deletions
diff --git a/python/sbp_fit.py b/python/sbp_fit.py
index a654e81..a22dd19 100755
--- a/python/sbp_fit.py
+++ b/python/sbp_fit.py
@@ -47,8 +47,8 @@ Sample config file:
-------------------------------------------------
name = <NAME>
obsid = <OBSID>
-r500_pix = <R500_pixel>
-r500_kpc = <R500_kpc>
+r500_pix = <R500_PIX>
+r500_kpc = <R500_KPC>
sbpfile = sbprofile.txt
# unit of radius: pix (default) or kpc
@@ -56,7 +56,7 @@ unit = pixel
# sbp model: "sbeta" or "dbeta"
model = sbeta
-#model = dbeta
+#model = dbeta
# output file to store the fitting results
outfile = sbpfit.txt
@@ -64,7 +64,7 @@ outfile = sbpfit.txt
imgfile = sbpfit.png
# data range to be ignored during fitting (same unit as the above "unit")
-#ignore = 0.0-20.0,
+#ignore = 0.0-20.0,
# specify the ignore range w.r.t R500 ("r500_pix" or "r500_kpc" required)
#ignore_r500 = 0.0-0.15,
@@ -77,11 +77,11 @@ imgfile = sbpfit_sbeta.png
[[params]]
# model parameters
# name = initial, lower, upper, variable (FIXED/False to fix the parameter)
- s0 = 1.0e-8, 0.0, 1.0e-6
- rc = 30.0, 1.0, 1.0e4
- #rc = 30.0, 1.0, 1.0e4, FIXED
- beta = 0.7, 0.3, 1.1
- bkg = 1.0e-9, 0.0, 1.0e-7
+ s0 = 1.0e-8, 0.0, 1.0e-6
+ rc = 30.0, 5.0, 1.0e4
+ #rc = 30.0, 5.0, 1.0e4, FIXED
+ beta = 0.7, 0.3, 1.1
+ bkg = 1.0e-10, 0.0, 1.0e-8
[dbeta]
@@ -90,13 +90,13 @@ imgfile = sbpfit_dbeta.png
#ignore = 0.0-20.0,
#ignore_r500 = 0.0-0.15,
[[params]]
- s01 = 1.0e-8, 0.0, 1.0e-6
- rc1 = 50.0, 10.0, 1.0e4
- beta1 = 0.7, 0.3, 1.1
- s02 = 1.0e-8, 0.0, 1.0e-6
- rc2 = 30.0, 1.0, 5.0e2
- beta2 = 0.7, 0.3, 1.1
- bkg = 1.0e-9, 0.0, 1.0e-7
+ s01 = 1.0e-8, 0.0, 1.0e-6
+ rc1 = 50.0, 10.0, 1.0e4
+ beta1 = 0.7, 0.3, 1.1
+ s02 = 1.0e-8, 0.0, 1.0e-6
+ rc2 = 30.0, 2.0, 5.0e2
+ beta2 = 0.7, 0.3, 1.1
+ bkg = 1.0e-10, 0.0, 1.0e-8
-------------------------------------------------
"""
@@ -704,7 +704,7 @@ def make_model(config, modelname):
# double-beta model
model = FitModelDBeta()
else:
- raise ValueError("Invalid model")
+ raise ValueError("Invalid model: %s" % modelname)
# set initial values and bounds for the model parameters
params = config[modelname]["params"]
for p, value in params.items():