diff options
Diffstat (limited to 'python')
-rwxr-xr-x | python/adjust_spectrum_error.py | 170 | ||||
-rwxr-xr-x | python/crosstalk_deprojection.py | 1812 | ||||
-rwxr-xr-x | python/radec2deg.py | 96 | ||||
-rwxr-xr-x | python/radec_angle.py | 248 | ||||
-rwxr-xr-x | python/randomize_events.py | 72 |
5 files changed, 0 insertions, 2398 deletions
diff --git a/python/adjust_spectrum_error.py b/python/adjust_spectrum_error.py deleted file mode 100755 index 0f80ec7..0000000 --- a/python/adjust_spectrum_error.py +++ /dev/null @@ -1,170 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- - -""" -Squeeze the spectrum according to the grouping specification, then -calculate the statistical errors for each group, and apply error -adjustments (e.g., incorporate the systematic uncertainties). -""" - -__version__ = "0.1.0" -__date__ = "2016-01-11" - - -import sys -import argparse - -import numpy as np -from astropy.io import fits - - -class Spectrum: - """ - Spectrum class to keep spectrum information and perform manipulations. - """ - header = None - channel = None - counts = None - grouping = None - quality = None - - def __init__(self, specfile): - f = fits.open(specfile) - spechdu = f['SPECTRUM'] - self.header = spechdu.header - self.channel = spechdu.data.field('CHANNEL') - self.counts = spechdu.data.field('COUNTS') - self.grouping = spechdu.data.field('GROUPING') - self.quality = spechdu.data.field('QUALITY') - f.close() - - def squeezeByGrouping(self): - """ - Squeeze the spectrum according to the grouping specification, - i.e., sum the counts belonging to the same group, and place the - sum as the first channel within each group with other channels - of counts zero's. - """ - counts_squeezed = [] - cnt_sum = 0 - cnt_num = 0 - first = True - for grp, cnt in zip(self.grouping, self.counts): - if first and grp == 1: - # first group - cnt_sum = cnt - cnt_num = 1 - first = False - elif grp == 1: - # save previous group - counts_squeezed.append(cnt_sum) - counts_squeezed += [ 0 for i in range(cnt_num-1) ] - # start new group - cnt_sum = cnt - cnt_num = 1 - else: - # group continues - cnt_sum += cnt - cnt_num += 1 - # last group - # save previous group - counts_squeezed.append(cnt_sum) - counts_squeezed += [ 0 for i in range(cnt_num-1) ] - self.counts_squeezed = np.array(counts_squeezed, dtype=np.int32) - - def calcStatErr(self, gehrels=False): - """ - Calculate the statistical errors for the grouped channels, - and save as the STAT_ERR column. - """ - idx_nz = np.nonzero(self.counts_squeezed) - stat_err = np.zeros(self.counts_squeezed.shape) - if gehrels: - # Gehrels - stat_err[idx_nz] = 1 + np.sqrt(self.counts_squeezed[idx_nz] + 0.75) - else: - stat_err[idx_nz] = np.sqrt(self.counts_squeezed[idx_nz]) - self.stat_err = stat_err - - @staticmethod - def parseSysErr(syserr): - """ - Parse the string format of syserr supplied in the commandline. - """ - items = map(str.strip, syserr.split(',')) - syserr_spec = [] - for item in items: - spec = item.split(':') - try: - spec = (int(spec[0]), int(spec[1]), float(spec[2])) - except: - raise ValueError("invalid syserr specficiation") - syserr_spec.append(spec) - return syserr_spec - - def applySysErr(self, syserr): - """ - Apply systematic error adjustments to the above calculated - statistical errors. - """ - syserr_spec = self.parseSysErr(syserr) - for lo, hi, se in syserr_spec: - err_adjusted = self.stat_err[(lo-1):(hi-1)] * np.sqrt(1+se) - self.stat_err_adjusted = err_adjusted - - def updateHeader(self): - """ - Update header accordingly. - """ - # POISSERR - self.header['POISSERR'] = False - - def write(self, filename, clobber=False): - """ - Write the updated/modified spectrum block to file. - """ - channel_col = fits.Column(name='CHANNEL', format='J', - array=self.channel) - counts_col = fits.Column(name='COUNTS', format='J', - array=self.counts_squeezed) - stat_err_col = fits.Column(name='STAT_ERR', format='D', - array=self.stat_err_adjusted) - grouping_col = fits.Column(name='GROUPING', format='I', - array=self.grouping) - quality_col = fits.Column(name='QUALITY', format='I', - array=self.quality) - spec_cols = fits.ColDefs([channel_col, counts_col, stat_err_col, - grouping_col, quality_col]) - spechdu = fits.BinTableHDU.from_columns(spec_cols, header=self.header) - spechdu.writeto(filename, clobber=clobber) - - -def main(): - parser = argparse.ArgumentParser( - description="Apply systematic error adjustments to spectrum.") - parser.add_argument("-V", "--version", action="version", - version="%(prog)s " + "%s (%s)" % (__version__, __date__)) - parser.add_argument("infile", help="input spectrum file") - parser.add_argument("outfile", help="output adjusted spectrum file") - parser.add_argument("-e", "--syserr", dest="syserr", required=True, - help="systematic error specification; " + \ - "syntax: ch1low:ch1high:syserr1,...") - parser.add_argument("-C", "--clobber", dest="clobber", - action="store_true", help="overwrite output file if exists") - parser.add_argument("-G", "--gehrels", dest="gehrels", - action="store_true", help="use Gehrels error?") - args = parser.parse_args() - - spec = Spectrum(args.infile) - spec.squeezeByGrouping() - spec.calcStatErr(gehrels=args.gehrels) - spec.applySysErr(syserr=args.syserr) - spec.updateHeader() - spec.write(args.outfile, clobber=args.clobber) - - -if __name__ == "__main__": - main() - - -# vim: set ts=4 sw=4 tw=0 fenc=utf-8 ft=python: # diff --git a/python/crosstalk_deprojection.py b/python/crosstalk_deprojection.py deleted file mode 100755 index b08a66a..0000000 --- a/python/crosstalk_deprojection.py +++ /dev/null @@ -1,1812 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -# -# References: -# [1] Definition of RMF and ARF file formats -# https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html -# [2] The OGIP Spectral File Format -# https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/summary/ogip_92_007_summary.html -# [3] CIAO: Auxiliary Response File -# http://cxc.harvard.edu/ciao/dictionary/arf.html -# [4] CIAO: Redistribution Matrix File -# http://cxc.harvard.edu/ciao/dictionary/rmf.html -# [5] astropy - FITS format code -# http://docs.astropy.org/en/stable/io/fits/usage/table.html#column-creation -# [6] XSPEC - Spectral Fitting -# https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecSpectralFitting.html -# [7] Direct X-ray Spectra Deprojection -# https://www-xray.ast.cam.ac.uk/papers/dsdeproj/ -# Sanders & Fabian 2007, MNRAS, 381, 1381 -# -# -# Weitian LI -# Created: 2016-03-26 -# Updated: 2016-06-07 -# -# Change log: -# 2016-06-07: -# * Explain the errors/uncertainties calculation approach -# 2016-04-20: -# * Add argument 'add_history' to some methods (to avoid many duplicated -# histories due to Monte Carlo) -# * Rename 'reset_header_keywords()' to 'fix_header_keywords()', -# and add mandatory spectral keywords if missing -# * Add method 'fix_header()' to class 'Crosstalk' and 'Deprojection', -# and fix the headers before write spectra -# 2016-04-19: -# * Ignore numpy error due to division by zero -# * Update tool description and sample configuration -# * Add two other main methods: `main_deprojection()' and `main_crosstalk()' -# * Add argument 'group_squeeze' to some methods for better performance -# * Rename from 'correct_crosstalk.py' to 'crosstalk_deprojection.py' -# 2016-04-18: -# * Implement deprojection function: class Deprojection -# * Support spectral grouping (supply the grouping specification) -# * Add grouping, estimate_errors, copy, randomize, etc. methods -# * Utilize the Monte Carlo techniques to estimate the final spectral errors -# * Collect all ARFs and RMFs within dictionaries -# 2016-04-06: -# * Fix `RMF: get_rmfimg()' for XMM EPIC RMF -# 2016-04-02: -# * Interpolate ARF in order to match the spectral channel energies -# * Add version and date information -# * Update documentations -# * Update header history contents -# 2016-04-01: -# * Greatly update the documentations (e.g., description, sample config) -# * Add class `RMF' -# * Add method `get_energy()' for class `ARF' -# * Split out class `SpectrumSet' from `Spectrum' -# * Implement background subtraction -# * Add config `subtract_bkg' and corresponding argument -# -# XXX/FIXME: -# * Deprojection: account for ARF differences across different regions -# -# TODO: -# * Split classes ARF, RMF, Spectrum, and SpectrumSet to a separate module -# - -__version__ = "0.5.3" -__date__ = "2016-06-07" - - -""" -Correct the crosstalk effect of XMM spectra by subtracting the photons -that scattered from the surrounding regions due to the finite PSF, and -by compensating the photons that scattered to the surrounding regions, -according to the generated crosstalk ARFs by SAS `arfgen'. - -After the crosstalk effect being corrected, the deprojection is performed -to deproject the crosstalk-corrected spectra to derive the spectra with -both the crosstalk effect and projection effect corrected. - - -Sample config file (in `ConfigObj' syntax): ------------------------------------------------------------ -# operation mode: deprojection, crosstalk, or both (default) -mode = both -# supply a *groupped* spectrum (from which the "GROUPING" and "QUALITY" -# are used to group all the following spectra) -grouping = spec_grp.pi -# whether to subtract the background before crosstalk correction -subtract_bkg = True -# whether to fix the negative channel values due to spectral subtractions -fix_negative = False -# Monte Carlo times for spectral error estimation -mc_times = 5000 -# show progress details and verbose information -verbose = True -# overwrite existing files -clobber = False - -# NOTE: -# ONLY specifiy ONE set of projected spectra (i.e., from the same detector -# of one observation), since ALL the following specified spectra will be -# used for the deprojection. - -[reg1] -... - -[reg2] -outfile = deprojcc_reg2.pi -spec = reg2.pi -arf = reg2.arf -rmf = reg2.rmf -bkg = reg2_bkg.pi - [[cross_in]] - [[[in1]]] - spec = reg1.pi - arf = reg1.arf - rmf = reg1.rmf - bkg = reg1_bkg.pi - cross_arf = reg_1-2.arf - [[[in2]]] - spec = reg3.pi - arf = reg3.arf - rmf = reg3.rmf - bkg = reg3_bkg.pi - cross_arf = reg_3-2.arf - [[cross_out]] - cross_arf = reg_2-1.arf, reg_2-3.arf - -[...] -... ------------------------------------------------------------ -""" - -WARNING = """ -********************************* WARNING ************************************ -The generated spectra are substantially modified (e.g., scale, add, subtract), -therefore, take special care when interpretating the fitting results, -especially the metal abundances and normalizations. -****************************************************************************** -""" - - -import sys -import os -import argparse -from datetime import datetime -from copy import copy - -import numpy as np -import scipy as sp -import scipy.interpolate -from astropy.io import fits -from configobj import ConfigObj - - -def group_data(data, grouping): - """ - Group the data with respect to the supplied `grouping' specification - (i.e., "GROUPING" columns of a spectrum). The channel counts of the - same group are summed up and assigned to the FIRST channel of this - group, while the OTHRE channels are all set to ZERO. - """ - data_grp = np.array(data).copy() - for i in reversed(range(len(data))): - if grouping[i] == 1: - # the beginning channel of a group - continue - else: - # other channels of a group - data_grp[i-1] += data_grp[i] - data_grp[i] = 0 - assert np.isclose(sum(data_grp), sum(data)) - return data_grp - - -class ARF: # {{{ - """ - Class to handle the ARF (ancillary/auxiliary response file), - which contains the combined instrumental effective area - (telescope/filter/detector) and the quantum efficiency (QE) as a - function of energy averaged over time. - The effective area is [cm^2], and the QE is [counts/photon]; they are - multiplied together to create the ARF, resulting in [cm^2 counts/photon]. - - **CAVEAT/NOTE**: - Generally, the "ENERG_LO" and "ENERG_HI" columns of an ARF are *different* - to the "E_MIN" and "E_MAX" columns of a RMF (which are corresponding - to the spectrum channel energies). - For the XMM EPIC *pn* and Chandra *ACIS*, the generated ARF does NOT have - the same number of data points to that of spectral channels, i.e., the - "ENERG_LO" and "ENERG_HI" columns of ARF is different to the "E_MIN" and - "E_MAX" columns of RMF. - Therefore it is necessary to interpolate and extrapolate the ARF curve - in order to match the spectrum (or RMF "EBOUNDS" extension). - As for the XMM EPIC *MOS1* and *MOS2*, the ARF data points match the - spectral channels, i.e., the energy positions of each ARF data point and - spectral channel are consistent. Thus the interpolation is not needed. - - References: - [1] CIAO: Auxiliary Response File - http://cxc.harvard.edu/ciao/dictionary/arf.html - [2] Definition of RMF and ARF file formats - https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html - """ - filename = None - fitsobj = None - # only consider the "SPECTRUM" extension - header = None - energ_lo = None - energ_hi = None - specresp = None - # function of the interpolated ARF - f_interp = None - # energies of the spectral channels - energy_channel = None - # spectral channel grouping specification - grouping = None - groupped = False - # groupped ARF channels with respect to the grouping - specresp_grp = None - - def __init__(self, filename): - self.filename = filename - self.fitsobj = fits.open(filename) - ext_specresp = self.fitsobj["SPECRESP"] - self.header = ext_specresp.header - self.energ_lo = ext_specresp.data["ENERG_LO"] - self.energ_hi = ext_specresp.data["ENERG_HI"] - self.specresp = ext_specresp.data["SPECRESP"] - - def get_data(self, groupped=False, group_squeeze=False, copy=True): - if groupped: - specresp = self.specresp_grp - if group_squeeze: - specresp = specresp[self.grouping == 1] - else: - specresp = self.specresp - if copy: - return specresp.copy() - else: - return specresp - - def get_energy(self, mean="geometric"): - """ - Return the mean energy values of the ARF. - - Arguments: - * mean: type of the mean energy: - + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max) - + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max) - """ - if mean == "geometric": - energy = np.sqrt(self.energ_lo * self.energ_hi) - elif mean == "arithmetic": - energy = 0.5 * (self.energ_lo + self.energ_hi) - else: - raise ValueError("Invalid mean type: %s" % mean) - return energy - - def interpolate(self, x=None, verbose=False): - """ - Cubic interpolate the ARF curve using `scipy.interpolate' - - If the requested point is outside of the data range, the - fill value of *zero* is returned. - - Arguments: - * x: points at which the interpolation to be calculated. - - Return: - If x is None, then the interpolated function is returned, - otherwise, the interpolated data are returned. - """ - if not hasattr(self, "f_interp") or self.f_interp is None: - energy = self.get_energy() - arf = self.get_data(copy=False) - if verbose: - print("INFO: interpolating '%s' (this may take a while) ..." \ - % self.filename, file=sys.stderr) - f_interp = sp.interpolate.interp1d(energy, arf, kind="cubic", - bounds_error=False, fill_value=0.0, assume_sorted=True) - self.f_interp = f_interp - if x is not None: - return self.f_interp(x) - else: - return self.f_interp - - def apply_grouping(self, energy_channel, grouping, verbose=False): - """ - Group the ARF channels (INTERPOLATED with respect to the spectral - channels) by the supplied grouping specification. - - Arguments: - * energy_channel: energies of the spectral channel - * grouping: spectral grouping specification - - Return: `self.specresp_grp' - """ - if self.groupped: - return - if verbose: - print("INFO: Grouping spectrum '%s' ..." % self.filename, - file=sys.stderr) - self.energy_channel = energy_channel - self.grouping = grouping - # interpolate the ARF w.r.t the spectral channel energies - arf_interp = self.interpolate(x=energy_channel, verbose=verbose) - self.specresp_grp = group_data(arf_interp, grouping) - self.groupped = True -# class ARF }}} - - -class RMF: # {{{ - """ - Class to handle the RMF (redistribution matrix file), - which maps from energy space into detector pulse height (or position) - space. Since detectors are not perfect, this involves a spreading of - the observed counts by the detector resolution, which is expressed as - a matrix multiplication. - For X-ray spectral analysis, the RMF encodes the probability R(E,p) - that a detected photon of energy E will be assisgned to a given - channel value (PHA or PI) of p. - - The standard Legacy format [2] for the RMF uses a binary table in which - each row contains R(E,p) for a single value of E as a function of p. - Non-zero sequences of elements of R(E,p) are encoded using a set of - variable length array columns. This format is compact but hard to - manipulate and understand. - - **CAVEAT/NOTE**: - + See also the above ARF CAVEAT/NOTE. - + The "EBOUNDS" extension contains the `CHANNEL', `E_MIN' and `E_MAX' - columns. This `CHANNEL' is the same as that of a spectrum. Therefore, - the energy values determined from the `E_MIN' and `E_MAX' columns are - used to interpolate and extrapolate the ARF curve. - + The `ENERG_LO' and `ENERG_HI' columns of the "MATRIX" extension are - the same as that of a ARF. - - References: - [1] CIAO: Redistribution Matrix File - http://cxc.harvard.edu/ciao/dictionary/rmf.html - [2] Definition of RMF and ARF file formats - https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html - """ - filename = None - fitsobj = None - ## extension "MATRIX" - hdr_matrix = None - energ_lo = None - energ_hi = None - n_grp = None - f_chan = None - n_chan = None - # raw squeezed RMF matrix data - matrix = None - ## extension "EBOUNDS" - hdr_ebounds = None - channel = None - e_min = None - e_max = None - ## converted 2D RMF matrix/image from the squeezed binary table - # size: len(energ_lo) x len(channel) - rmfimg = None - - def __init__(self, filename): - self.filename = filename - self.fitsobj = fits.open(filename) - ## "MATRIX" extension - ext_matrix = self.fitsobj["MATRIX"] - self.hdr_matrix = ext_matrix.header - self.energ_lo = ext_matrix.data["ENERG_LO"] - self.energ_hi = ext_matrix.data["ENERG_HI"] - self.n_grp = ext_matrix.data["N_GRP"] - self.f_chan = ext_matrix.data["F_CHAN"] - self.n_chan = ext_matrix.data["N_CHAN"] - self.matrix = ext_matrix.data["MATRIX"] - ## "EBOUNDS" extension - ext_ebounds = self.fitsobj["EBOUNDS"] - self.hdr_ebounds = ext_ebounds.header - self.channel = ext_ebounds.data["CHANNEL"] - self.e_min = ext_ebounds.data["E_MIN"] - self.e_max = ext_ebounds.data["E_MAX"] - - def get_energy(self, mean="geometric"): - """ - Return the mean energy values of the RMF "EBOUNDS". - - Arguments: - * mean: type of the mean energy: - + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max) - + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max) - """ - if mean == "geometric": - energy = np.sqrt(self.e_min * self.e_max) - elif mean == "arithmetic": - energy = 0.5 * (self.e_min + self.e_max) - else: - raise ValueError("Invalid mean type: %s" % mean) - return energy - - def get_rmfimg(self): - """ - Convert the RMF data in squeezed binary table (standard Legacy format) - to a 2D image/matrix. - """ - def _make_rmfimg_row(n_channel, dtype, f_chan, n_chan, mat_row): - # make sure that `f_chan' and `n_chan' are 1-D numpy array - f_chan = np.array(f_chan).reshape(-1) - f_chan -= 1 # FITS indices are 1-based - n_chan = np.array(n_chan).reshape(-1) - idx = np.concatenate([ np.arange(f, f+n) \ - for f, n in zip(f_chan, n_chan) ]) - rmfrow = np.zeros(n_channel, dtype=dtype) - rmfrow[idx] = mat_row - return rmfrow - # - if self.rmfimg is None: - # Make the 2D RMF matrix/image - n_energy = len(self.energ_lo) - n_channel = len(self.channel) - rmf_dtype = self.matrix[0].dtype - rmfimg = np.zeros(shape=(n_energy, n_channel), dtype=rmf_dtype) - for i in np.arange(n_energy)[self.n_grp > 0]: - rmfimg[i, :] = _make_rmfimg_row(n_channel, rmf_dtype, - self.f_chan[i], self.n_chan[i], self.matrix[i]) - self.rmfimg = rmfimg - return self.rmfimg - - def write_rmfimg(self, outfile, clobber=False): - rmfimg = self.get_rmfimg() - # merge headers - header = self.hdr_matrix.copy(strip=True) - header.extend(self.hdr_ebounds.copy(strip=True)) - outfits = fits.PrimaryHDU(data=rmfimg, header=header) - outfits.writeto(outfile, checksum=True, clobber=clobber) -# class RMF }}} - - -class Spectrum: # {{{ - """ - Class that deals with the X-ray spectrum file (usually *.pi). - """ - filename = None - # FITS object return by `fits.open()' - fitsobj = None - # header of "SPECTRUM" extension - header = None - # "SPECTRUM" extension data - channel = None - # name of the spectrum data column (i.e., type, "COUNTS" or "RATE") - spec_type = None - # unit of the spectrum data ("count" for "COUNTS", "count/s" for "RATE") - spec_unit = None - # spectrum data - spec_data = None - # estimated spectral errors for each channel/group - spec_err = None - # statistical errors for each channel/group - stat_err = None - # grouping and quality - grouping = None - quality = None - # whether the spectral data being groupped - groupped = False - # several important keywords - EXPOSURE = None - BACKSCAL = None - AREASCAL = None - RESPFILE = None - ANCRFILE = None - BACKFILE = None - # numpy dtype and FITS format code of the spectrum data - spec_dtype = None - spec_fits_format = None - # output filename for writing the spectrum if no filename provided - outfile = None - - def __init__(self, filename, outfile=None): - self.filename = filename - self.fitsobj = fits.open(filename) - ext_spec = self.fitsobj["SPECTRUM"] - self.header = ext_spec.header.copy(strip=True) - colnames = ext_spec.columns.names - if "COUNTS" in colnames: - self.spec_type = "COUNTS" - elif "RATE" in colnames: - self.spec_type = "RATE" - else: - raise ValueError("Invalid spectrum file") - self.channel = ext_spec.data.columns["CHANNEL"].array - col_spec_data = ext_spec.data.columns[self.spec_type] - self.spec_data = col_spec_data.array.copy() - self.spec_unit = col_spec_data.unit - self.spec_dtype = col_spec_data.dtype - self.spec_fits_format = col_spec_data.format - # grouping and quality - if "GROUPING" in colnames: - self.grouping = ext_spec.data.columns["GROUPING"].array - if "QUALITY" in colnames: - self.quality = ext_spec.data.columns["QUALITY"].array - # keywords - self.EXPOSURE = self.header.get("EXPOSURE") - self.BACKSCAL = self.header.get("BACKSCAL") - self.AREASCAL = self.header.get("AREASCAL") - self.RESPFILE = self.header.get("RESPFILE") - self.ANCRFILE = self.header.get("ANCRFILE") - self.BACKFILE = self.header.get("BACKFILE") - # output filename - self.outfile = outfile - - def get_data(self, group_squeeze=False, copy=True): - """ - Get the spectral data (i.e., self.spec_data). - - Arguments: - * group_squeeze: whether squeeze the spectral data according to - the grouping (i.e., exclude the channels that - are not the first channel of the group, which - also have value of ZERO). - This argument is effective only the grouping - being applied. - """ - if group_squeeze and self.groupped: - spec_data = self.spec_data[self.grouping == 1] - else: - spec_data = self.spec_data - if copy: - return spec_data.copy() - else: - return spec_data - - def get_channel(self, copy=True): - if copy: - return self.channel.copy() - else: - return self.channel - - def set_data(self, spec_data, group_squeeze=True): - """ - Set the spectral data of this spectrum to the supplied data. - """ - if group_squeeze and self.groupped: - assert sum(self.grouping == 1) == len(spec_data) - self.spec_data[self.grouping == 1] = spec_data - else: - assert len(self.spec_data) == len(spec_data) - self.spec_data = spec_data.copy() - - def add_stat_err(self, stat_err, group_squeeze=True): - """ - Add the "STAT_ERR" column as the statistical errors of each spectral - group, which are estimated by utilizing the Monte Carlo techniques. - """ - self.stat_err = np.zeros(self.spec_data.shape, - dtype=self.spec_data.dtype) - if group_squeeze and self.groupped: - assert sum(self.grouping == 1) == len(stat_err) - self.stat_err[self.grouping == 1] = stat_err - else: - assert len(self.stat_err) == len(stat_err) - self.stat_err = stat_err.copy() - self.header["POISSERR"] = False - - def apply_grouping(self, grouping=None, quality=None): - """ - Apply the spectral channel grouping specification to the spectrum. - - NOTE: - * The spectral data (i.e., self.spec_data) is MODIFIED! - * The spectral data within the same group are summed up. - * The self grouping is overwritten if `grouping' is supplied, as well - as the self quality. - """ - if grouping is not None: - self.grouping = grouping - if quality is not None: - self.quality = quality - self.spec_data = group_data(self.spec_data, self.grouping) - self.groupped = True - - def estimate_errors(self, gehrels=True): - """ - Estimate the statistical errors of each spectral group (after - applying grouping) for the source spectrum (and background spectrum). - - If `gehrels=True', the statistical error for a spectral group with - N photons is given by `1 + sqrt(N + 0.75)'; otherwise, the error - is given by `sqrt(N)'. - - Results: `self.spec_err' - """ - eps = 1.0e-10 - if gehrels: - self.spec_err = 1.0 + np.sqrt(self.spec_data + 0.75) - else: - self.spec_err = np.sqrt(self.spec_data) - # replace the zeros with a very small value (because - # `np.random.normal' requires `scale' > 0) - self.spec_err[self.spec_err <= 0.0] = eps - - def copy(self): - """ - Return a copy of this object, with the `np.ndarray' properties are - copied. - """ - new = copy(self) - for k, v in self.__dict__.items(): - if isinstance(v, np.ndarray): - setattr(new, k, v.copy()) - return new - - def randomize(self): - """ - Randomize the spectral data according to the estimated spectral - group errors by assuming the normal distribution. - - NOTE: this method should be called AFTER the `copy()' method. - """ - if self.spec_err is None: - raise ValueError("No valid 'spec_err' presents") - if self.groupped: - idx = self.grouping == 1 - self.spec_data[idx] = np.random.normal(self.spec_data[idx], - self.spec_err[idx]) - else: - self.spec_data = np.random.normal(self.spec_data, self.spec_err) - return self - - def fix_header_keywords(self, - reset_kw=["ANCRFILE", "RESPFILE", "BACKFILE"]): - """ - Reset the keywords to "NONE" to avoid confusion or mistakes, - and also add mandatory spectral keywords if missing. - - Reference: - [1] The OGIP Spectral File Format, Sec. 3.1.1 - https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/summary/ogip_92_007_summary.html - """ - default_keywords = { - ## Mandatory keywords - #"EXTNAME" : "SPECTRUM", - "TELESCOP" : "NONE", - "INSTRUME" : "NONE", - "FILTER" : "NONE", - #"EXPOSURE" : <integration_time (s)>, - "BACKFILE" : "NONE", - "CORRFILE" : "NONE", - "CORRSCAL" : 1.0, - "RESPFILE" : "NONE", - "ANCRFILE" : "NONE", - "HDUCLASS" : "OGIP", - "HDUCLAS1" : "SPECTRUM", - "HDUVERS" : "1.2.1", - "POISSERR" : True, - #"CHANTYPE" : "PI", - #"DETCHANS" : <total_number_of_detector_channels>, - ## Optional keywords for further information - "BACKSCAL" : 1.0, - "AREASCAL" : 1.0, - # Type of spectral data: - # (1) "TOTAL": gross spectrum (source+bkg); - # (2) "NET": background-subtracted spectrum - # (3) "BKG" background spectrum - #"HDUCLAS2" : "NET", - # Details of the type of data: - # (1) "COUNT": data stored as counts - # (2) "RATE": data stored as counts/s - "HDUCLAS3" : { "COUNTS":"COUNT", - "RATE":"RATE" }.get(self.spec_type), - } - # add mandatory keywords if missing - for kw, value in default_keywords.items(): - if kw not in self.header: - self.header[kw] = value - # reset the specified keywords - for kw in reset_kw: - self.header[kw] = default_keywords.get(kw) - - def write(self, filename=None, clobber=False): - """ - Create a new "SPECTRUM" table/extension and replace the original - one, then write to output file. - """ - if filename is None: - filename = self.outfile - columns = [ - fits.Column(name="CHANNEL", format="I", array=self.channel), - fits.Column(name=self.spec_type, format=self.spec_fits_format, - unit=self.spec_unit, array=self.spec_data), - ] - if self.grouping is not None: - columns.append(fits.Column(name="GROUPING", - format="I", array=self.grouping)) - if self.quality is not None: - columns.append(fits.Column(name="QUALITY", - format="I", array=self.quality)) - if self.stat_err is not None: - columns.append(fits.Column(name="STAT_ERR", unit=self.spec_unit, - format=self.spec_fits_format, - array=self.stat_err)) - ext_spec_cols = fits.ColDefs(columns) - ext_spec = fits.BinTableHDU.from_columns(ext_spec_cols, - header=self.header) - self.fitsobj["SPECTRUM"] = ext_spec - self.fitsobj.writeto(filename, clobber=clobber, checksum=True) -# class Spectrum }}} - - -class SpectrumSet(Spectrum): # {{{ - """ - This class handles a set of spectrum, including the source spectrum, - RMF, ARF, and the background spectrum. - - **NOTE**: - The "COUNTS" column data are converted from "int32" to "float32", - since this spectrum will be subtracted/compensated according to the - ratios of ARFs. - """ - # ARF object for this spectrum - arf = None - # RMF object for this spectrum - rmf = None - # background Spectrum object for this spectrum - bkg = None - # inner and outer radius of the region from which the spectrum extracted - radius_inner = None - radius_outer = None - # total angular range of the spectral region - angle = None - - # numpy dtype and FITS format code to which the spectrum data be - # converted if the data is "COUNTS" - #_spec_dtype = np.float32 - #_spec_fits_format = "E" - _spec_dtype = np.float64 - _spec_fits_format = "D" - - def __init__(self, filename, outfile=None, arf=None, rmf=None, bkg=None): - super().__init__(filename, outfile) - # convert spectrum data type if necessary - if self.spec_data.dtype != self._spec_dtype: - self.spec_data = self.spec_data.astype(self._spec_dtype) - self.spec_dtype = self._spec_dtype - self.spec_fits_format = self._spec_fits_format - if arf is not None: - if isinstance(arf, ARF): - self.arf = arf - else: - self.arf = ARF(arf) - if rmf is not None: - if isinstance(rmf, RMF): - self.rmf = rmf - else: - self.rmf = RMF(rmf) - if bkg is not None: - if isinstance(bkg, Spectrum): - self.bkg = bkg - else: - self.bkg = Spectrum(bkg) - # convert background spectrum data type if necessary - if self.bkg.spec_data.dtype != self._spec_dtype: - self.bkg.spec_data = self.bkg.spec_data.astype(self._spec_dtype) - self.bkg.spec_dtype = self._spec_dtype - self.bkg.spec_fits_format = self._spec_fits_format - - def get_energy(self, mean="geometric"): - """ - Get the energy values of each channel if RMF present. - - NOTE: - The "E_MIN" and "E_MAX" columns of the RMF is required to calculate - the spectrum channel energies. - And the channel energies are generally different to the "ENERG_LO" - and "ENERG_HI" of the corresponding ARF. - """ - if self.rmf is None: - return None - else: - return self.rmf.get_energy(mean=mean) - - def get_arf(self, mean="geometric", groupped=True, copy=True): - """ - Get the interpolated ARF data w.r.t the spectral channel energies - if the ARF presents. - - Arguments: - * groupped: (bool) whether to get the groupped ARF - - Return: (groupped) interpolated ARF data - """ - if self.arf is None: - return None - else: - return self.arf.get_data(groupped=groupped, copy=copy) - - def read_xflt(self): - """ - Read the XFLT000# keywords from the header, check the validity (e.g., - "XFLT0001" should equals "XFLT0002", "XFLT0003" should equals 0). - Sum all the additional XFLT000# pairs (e.g., ) which describes the - regions angluar ranges. - """ - eps = 1.0e-6 - xflt0001 = float(self.header["XFLT0001"]) - xflt0002 = float(self.header["XFLT0002"]) - xflt0003 = float(self.header["XFLT0003"]) - # XFLT000# validity check - assert np.isclose(xflt0001, xflt0002) - assert abs(xflt0003) < eps - # outer radius of the region - self.radius_outer = xflt0001 - # angular regions - self.angle = 0.0 - num = 4 - while True: - try: - angle_begin = float(self.header["XFLT%04d" % num]) - angle_end = float(self.header["XFLT%04d" % (num+1)]) - num += 2 - except KeyError: - break - self.angle += (angle_end - angle_begin) - # if NO additional XFLT000# keys exist, assume "annulus" region - if self.angle < eps: - self.angle = 360.0 - - def scale(self): - """ - Scale the spectral data (and spectral group errors if present) of - the source spectrum (and background spectra if present) according - to the region angular size to make it correspond to the whole annulus - region (i.e., 360 degrees). - - NOTE: the spectral data and errors (i.e., `self.spec_data', and - `self.spec_err') is MODIFIED! - """ - self.spec_data *= (360.0 / self.angle) - if self.spec_err is not None: - self.spec_err *= (360.0 / self.angle) - # also scale the background spectrum if present - if self.bkg: - self.bkg.spec_data *= (360.0 / self.angle) - if self.bkg.spec_err is not None: - self.bkg.spec_err *= (360.0 / self.angle) - - def apply_grouping(self, grouping=None, quality=None, verbose=False): - """ - Apply the spectral channel grouping specification to the source - spectrum, the ARF (which is used during the later spectral - manipulations), and the background spectrum (if presents). - - NOTE: - * The spectral data (i.e., self.spec_data) is MODIFIED! - * The spectral data within the same group are summed up. - * The self grouping is overwritten if `grouping' is supplied, as well - as the self quality. - """ - super().apply_grouping(grouping=grouping, quality=quality) - # also group the ARF accordingly - self.arf.apply_grouping(energy_channel=self.get_energy(), - grouping=self.grouping, verbose=verbose) - # group the background spectrum if present - if self.bkg: - self.bkg.spec_data = group_data(self.bkg.spec_data, self.grouping) - - def estimate_errors(self, gehrels=True): - """ - Estimate the statistical errors of each spectral group (after - applying grouping) for the source spectrum (and background spectrum). - - If `gehrels=True', the statistical error for a spectral group with - N photons is given by `1 + sqrt(N + 0.75)'; otherwise, the error - is given by `sqrt(N)'. - - Results: `self.spec_err' (and `self.bkg.spec_err') - """ - super().estimate_errors(gehrels=gehrels) - eps = 1.0e-10 - # estimate the errors for background spectrum if present - if self.bkg: - if gehrels: - self.bkg.spec_err = 1.0 + np.sqrt(self.bkg.spec_data + 0.75) - else: - self.bkg.spec_err = np.sqrt(self.bkg.spec_data) - self.bkg.spec_err[self.bkg.spec_err <= 0.0] = eps - - def subtract_bkg(self, inplace=True, add_history=False, verbose=False): - """ - Subtract the background contribution from the source spectrum. - The `EXPOSURE' and `BACKSCAL' values are required to calculate - the fraction/ratio for the background subtraction. - - Arguments: - * inplace: whether replace the `spec_data' with the background- - subtracted spectrum data; If True, the attribute - `spec_bkg_subtracted' is also set to `True' when - the subtraction finished. - The keywords "BACKSCAL" and "AREASCAL" are set to 1.0. - - Return: - background-subtracted spectrum data - """ - ratio = (self.EXPOSURE / self.bkg.EXPOSURE) * \ - (self.BACKSCAL / self.bkg.BACKSCAL) * \ - (self.AREASCAL / self.bkg.AREASCAL) - operation = " SUBTRACT_BACKGROUND: %s - %s * %s" % \ - (self.filename, ratio, self.bkg.filename) - if verbose: - print(operation, file=sys.stderr) - spec_data_subbkg = self.spec_data - ratio * self.bkg.get_data() - if inplace: - self.spec_data = spec_data_subbkg - self.spec_bkg_subtracted = True - self.BACKSCAL = 1.0 - self.AREASCAL = 1.0 - # update header - self.header["BACKSCAL"] = 1.0 - self.header["AREASCAL"] = 1.0 - self.header["BACKFILE"] = "NONE" - self.header["HDUCLAS2"] = "NET" # background-subtracted spectrum - # also record history - if add_history: - self.header.add_history(operation) - return spec_data_subbkg - - def subtract(self, spectrumset, cross_arf, groupped=False, - group_squeeze=False, add_history=False, verbose=False): - """ - Subtract the photons that originate from the surrounding regions - but were scattered into this spectrum due to the finite PSF. - - The background of this spectrum and the given spectrum should - both be subtracted before applying this subtraction for crosstalk - correction, as well as the below `compensate()' procedure. - - NOTE: - 1. The crosstalk ARF must be provided, since the `spectrumset.arf' - is required to be its ARF without taking crosstalk into account: - spec1_new = spec1 - spec2 * (cross_arf_2_to_1 / arf2) - 2. The ARF are interpolated to match the energies of spetral channels. - """ - operation = " SUBTRACT: %s - (%s/%s) * %s" % (self.filename, - cross_arf.filename, spectrumset.arf.filename, - spectrumset.filename) - if verbose: - print(operation, file=sys.stderr) - energy = self.get_energy() - if groupped: - spectrumset.arf.apply_grouping(energy_channel=energy, - grouping=self.grouping, verbose=verbose) - cross_arf.apply_grouping(energy_channel=energy, - grouping=self.grouping, verbose=verbose) - arfresp_spec = spectrumset.arf.get_data(groupped=True, - group_squeeze=group_squeeze) - arfresp_cross = cross_arf.get_data(groupped=True, - group_squeeze=group_squeeze) - else: - arfresp_spec = spectrumset.arf.interpolate(x=energy, - verbose=verbose) - arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose) - with np.errstate(divide="ignore", invalid="ignore"): - arf_ratio = arfresp_cross / arfresp_spec - # fix nan/inf values due to division by zero - arf_ratio[ ~ np.isfinite(arf_ratio) ] = 0.0 - spec_data = self.get_data(group_squeeze=group_squeeze) - \ - spectrumset.get_data(group_squeeze=group_squeeze)*arf_ratio - self.set_data(spec_data, group_squeeze=group_squeeze) - # record history - if add_history: - self.header.add_history(operation) - - def compensate(self, cross_arf, groupped=False, group_squeeze=False, - add_history=False, verbose=False): - """ - Compensate the photons that originate from this regions but were - scattered into the surrounding regions due to the finite PSF. - - formula: - spec1_new = spec1 + spec1 * (cross_arf_1_to_2 / arf1) - """ - operation = " COMPENSATE: %s + (%s/%s) * %s" % (self.filename, - cross_arf.filename, self.arf.filename, self.filename) - if verbose: - print(operation, file=sys.stderr) - energy = self.get_energy() - if groupped: - cross_arf.apply_grouping(energy_channel=energy, - grouping=self.grouping, verbose=verbose) - arfresp_this = self.arf.get_data(groupped=True, - group_squeeze=group_squeeze) - arfresp_cross = cross_arf.get_data(groupped=True, - group_squeeze=group_squeeze) - else: - arfresp_this = self.arf.interpolate(x=energy, verbose=verbose) - arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose) - with np.errstate(divide="ignore", invalid="ignore"): - arf_ratio = arfresp_cross / arfresp_this - # fix nan/inf values due to division by zero - arf_ratio[ ~ np.isfinite(arf_ratio) ] = 0.0 - spec_data = self.get_data(group_squeeze=group_squeeze) + \ - self.get_data(group_squeeze=group_squeeze) * arf_ratio - self.set_data(spec_data, group_squeeze=group_squeeze) - # record history - if add_history: - self.header.add_history(operation) - - def fix_negative(self, add_history=False, verbose=False): - """ - The subtractions may lead to negative counts, it may be necessary - to fix these channels with negative values. - """ - neg_counts = self.spec_data < 0 - N = len(neg_counts) - neg_channels = np.arange(N, dtype=np.int)[neg_counts] - if len(neg_channels) > 0: - print("WARNING: %d channels have NEGATIVE counts" % \ - len(neg_channels), file=sys.stderr) - i = 0 - while len(neg_channels) > 0: - i += 1 - if verbose: - if i == 1: - print("*** Fixing negative channels: iter %d..." % i, - end="", file=sys.stderr) - else: - print("%d..." % i, end="", file=sys.stderr) - for ch in neg_channels: - neg_val = self.spec_data[ch] - if ch < N-2: - self.spec_data[ch] = 0 - self.spec_data[(ch+1):(ch+3)] -= 0.5 * np.abs(neg_val) - else: - # just set to zero if it is the last 2 channels - self.spec_data[ch] = 0 - # update negative channels indices - neg_counts = self.spec_data < 0 - neg_channels = np.arange(N, dtype=np.int)[neg_counts] - if i > 0: - print("FIXED!", file=sys.stderr) - # record history - if add_history: - self.header.add_history(" FIXED NEGATIVE CHANNELS") - - def set_radius_inner(self, radius_inner): - """ - Set the inner radius of the spectral region. - """ - assert radius_inner < self.radius_outer - self.radius_inner = radius_inner - - def copy(self): - """ - Return a copy of this object. - """ - new = super().copy() - if self.bkg: - new.bkg = self.bkg.copy() - return new - - def randomize(self): - """ - Randomize the source (and background if present) spectral data - according to the estimated spectral group errors by assuming the - normal distribution. - - NOTE: this method should be called AFTER the `copy()' method. - """ - super().randomize() - if self.bkg: - self.bkg.spec_data = np.random.normal(self.bkg.spec_data, - self.bkg.spec_err) - self.bkg.spec_data[self.grouping == -1] = 0.0 - return self -# class SpectrumSet }}} - - -class Crosstalk: # {{{ - """ - XMM-Newton PSF Crosstalk effect correction. - """ - # `SpectrumSet' object for the spectrum to be corrected - spectrumset = None - # NOTE/XXX: do NOT use list (e.g., []) here, otherwise, all the - # instances will share these list properties. - # `SpectrumSet' and `ARF' objects corresponding to the spectra from - # which the photons were scattered into this spectrum. - cross_in_specset = None - cross_in_arf = None - # `ARF' objects corresponding to the regions to which the photons of - # this spectrum were scattered into. - cross_out_arf = None - # grouping specification and quality data - grouping = None - quality = None - # whether the spectrum is groupped - groupped = False - - def __init__(self, config, arf_dict={}, rmf_dict={}, - grouping=None, quality=None): - """ - Arguments: - * config: a section of the whole config file (`ConfigObj' object) - """ - self.cross_in_specset = [] - self.cross_in_arf = [] - self.cross_out_arf = [] - # this spectrum to be corrected - self.spectrumset = SpectrumSet(filename=config["spec"], - outfile=config["outfile"], - arf=arf_dict.get(config["arf"], config["arf"]), - rmf=rmf_dict.get(config.get("rmf"), config.get("rmf")), - bkg=config.get("bkg")) - # spectra and cross arf from which photons were scattered in - for reg_in in config["cross_in"].values(): - specset = SpectrumSet(filename=reg_in["spec"], - arf=arf_dict.get(reg_in["arf"], reg_in["arf"]), - rmf=rmf_dict.get(reg_in.get("rmf"), reg_in.get("rmf")), - bkg=reg_in.get("bkg")) - self.cross_in_specset.append(specset) - self.cross_in_arf.append(arf_dict.get(reg_in["cross_arf"], - ARF(reg_in["cross_arf"]))) - # regions into which the photons of this spectrum were scattered into - if "cross_out" in config.sections: - cross_arf = config["cross_out"].as_list("cross_arf") - for arffile in cross_arf: - self.cross_out_arf.append(arf_dict.get(arffile, ARF(arffile))) - # grouping and quality - self.grouping = grouping - self.quality = quality - - def apply_grouping(self, verbose=False): - self.spectrumset.apply_grouping(grouping=self.grouping, - quality=self.quality, verbose=verbose) - # also group the related surrounding spectra - for specset in self.cross_in_specset: - specset.apply_grouping(grouping=self.grouping, - quality=self.quality, verbose=verbose) - self.groupped = True - - def estimate_errors(self, gehrels=True, verbose=False): - if verbose: - print("INFO: Estimating spectral errors ...") - self.spectrumset.estimate_errors(gehrels=gehrels) - # also estimate errors for the related surrounding spectra - for specset in self.cross_in_specset: - specset.estimate_errors(gehrels=gehrels) - - def do_correction(self, subtract_bkg=True, fix_negative=False, - group_squeeze=True, add_history=False, verbose=False): - """ - Perform the crosstalk correction. The background contribution - for each spectrum is subtracted first if `subtract_bkg' is True. - The basic correction procedures are recorded to the header. - """ - if add_history: - self.spectrumset.header.add_history("Crosstalk Correction BEGIN") - self.spectrumset.header.add_history(" TOOL: %s (v%s) @ %s" % (\ - os.path.basename(sys.argv[0]), __version__, - datetime.utcnow().isoformat())) - # background subtraction - if subtract_bkg: - if verbose: - print("INFO: subtract background ...", file=sys.stderr) - self.spectrumset.subtract_bkg(inplace=True, - add_history=add_history, verbose=verbose) - # also apply background subtraction to the surrounding spectra - for specset in self.cross_in_specset: - specset.subtract_bkg(inplace=True, - add_history=add_history, verbose=verbose) - # subtractions - if verbose: - print("INFO: apply subtractions ...", file=sys.stderr) - for specset, cross_arf in zip(self.cross_in_specset, - self.cross_in_arf): - self.spectrumset.subtract(spectrumset=specset, - cross_arf=cross_arf, groupped=self.groupped, - group_squeeze=group_squeeze, add_history=add_history, - verbose=verbose) - # compensations - if verbose: - print("INFO: apply compensations ...", file=sys.stderr) - for cross_arf in self.cross_out_arf: - self.spectrumset.compensate(cross_arf=cross_arf, - groupped=self.groupped, group_squeeze=group_squeeze, - add_history=add_history, verbose=verbose) - # fix negative values in channels - if fix_negative: - if verbose: - print("INFO: fix negative channel values ...", file=sys.stderr) - self.spectrumset.fix_negative(add_history=add_history, - verbose=verbose) - if add_history: - self.spectrumset.header.add_history("END Crosstalk Correction") - - def fix_header(self): - # fix header keywords - self.spectrumset.fix_header_keywords( - reset_kw=["RESPFILE", "ANCRFILE", "BACKFILE"]) - - def copy(self): - new = copy(self) - # properly handle the copy of spectrumsets - new.spectrumset = self.spectrumset.copy() - new.cross_in_specset = [ specset.copy() \ - for specset in self.cross_in_specset ] - return new - - def randomize(self): - self.spectrumset.randomize() - for specset in self.cross_in_specset: - specset.randomize() - return self - - def get_spectrum(self, copy=True): - if copy: - return self.spectrumset.copy() - else: - return self.spectrumset - - def write(self, filename=None, clobber=False): - self.spectrumset.write(filename=filename, clobber=clobber) -# class Crosstalk }}} - - -class Deprojection: # {{{ - """ - Perform the deprojection on a set of PROJECTED spectra with the - assumption of spherical symmetry of the source object, and produce - the DEPROJECTED spectra. - - NOTE: - * Assumption of the spherical symmetry - * Background should be subtracted before deprojection - * ARF differences of different regions are taken into account - - Reference & Credit: - [1] Direct X-ray Spectra Deprojection - https://www-xray.ast.cam.ac.uk/papers/dsdeproj/ - Sanders & Fabian 2007, MNRAS, 381, 1381 - """ - spectra = None - grouping = None - quality = None - - def __init__(self, spectra, grouping=None, quality=None, verbose=False): - """ - Arguments: - * spectra: a set of spectra from the inner-most to the outer-most - regions (e.g., spectra after correcting crosstalk effect) - * grouping: grouping specification for all the spectra - * quality: quality column for the spectra - """ - self.spectra = [] - for spec in spectra: - if not isinstance(spec, SpectrumSet): - raise ValueError("Not a 'SpectrumSet' object") - spec.read_xflt() - self.spectra.append(spec) - self.spectra = spectra - self.grouping = grouping - self.quality = quality - # sort spectra by `radius_outer' - self.spectra.sort(key=lambda x: x.radius_outer) - # set the inner radii - radii_inner = [0.0] + [ x.radius_outer for x in self.spectra[:-1] ] - for spec, rin in zip(self.spectra, radii_inner): - spec.set_radius_inner(rin) - if verbose: - print("Deprojection: loaded spectrum: radius: (%s, %s)" % \ - (spec.radius_inner, spec.radius_outer), - file=sys.stderr) - # check EXPOSURE validity (all spectra must have the same exposures) - exposures = [ spec.EXPOSURE for spec in self.spectra ] - assert np.allclose(exposures[:-1], exposures[1:]) - - def subtract_bkg(self, verbose=True): - for spec in self.spectra: - if not spec.bkg: - raise ValueError("Spectrum '%s' has NO background" % \ - spec.filename) - spec.subtract_bkg(inplace=True, verbose=verbose) - - def apply_grouping(self, verbose=False): - for spec in self.spectra: - spec.apply_grouping(grouping=self.grouping, quality=self.quality, - verbose=verbose) - - def estimate_errors(self, gehrels=True): - for spec in self.spectra: - spec.estimate_errors(gehrels=gehrels) - - def scale(self): - """ - Scale the spectral data according to the region angular size. - """ - for spec in self.spectra: - spec.scale() - - def do_deprojection(self, group_squeeze=True, - add_history=False, verbose=False): - # - # TODO/XXX: How to apply ARF correction here??? - # - num_spec = len(self.spectra) - tmp_spec_data = self.spectra[0].get_data(group_squeeze=group_squeeze) - spec_shape = tmp_spec_data.shape - spec_dtype = tmp_spec_data.dtype - spec_per_vol = [None] * num_spec - # - for shellnum in reversed(range(num_spec)): - if verbose: - print("DEPROJECTION: deprojecting shell %d ..." % shellnum, - file=sys.stderr) - spec = self.spectra[shellnum] - # calculate projected spectrum of outlying shells - proj_spec = np.zeros(spec_shape, spec_dtype) - for outer in range(shellnum+1, num_spec): - vol = self.projected_volume( - r1=self.spectra[outer].radius_inner, - r2=self.spectra[outer].radius_outer, - R1=spec.radius_inner, - R2=spec.radius_outer) - proj_spec += spec_per_vol[outer] * vol - # - this_spec = spec.get_data(group_squeeze=group_squeeze, copy=True) - deproj_spec = this_spec - proj_spec - # calculate the volume that this spectrum is from - this_vol = self.projected_volume( - r1=spec.radius_inner, r2=spec.radius_outer, - R1=spec.radius_inner, R2=spec.radius_outer) - # calculate the spectral data per unit volume - spec_per_vol[shellnum] = deproj_spec / this_vol - # set the spectral data to these deprojected values - self.set_spec_data(spec_per_vol, group_squeeze=group_squeeze) - # add history to header - if add_history: - self.add_history() - - def get_spec_data(self, group_squeeze=True, copy=True): - """ - Extract the spectral data of each spectrum after deprojection - performed. - """ - return [ spec.get_data(group_squeeze=group_squeeze, copy=copy) - for spec in self.spectra ] - - def set_spec_data(self, spec_data, group_squeeze=True): - """ - Set `spec_data' for each spectrum to the deprojected spectral data. - """ - assert len(spec_data) == len(self.spectra) - for spec, data in zip(self.spectra, spec_data): - spec.set_data(data, group_squeeze=group_squeeze) - - def add_stat_err(self, stat_err, group_squeeze=True): - """ - Add the "STAT_ERR" column to each spectrum. - """ - assert len(stat_err) == len(self.spectra) - for spec, err in zip(self.spectra, stat_err): - spec.add_stat_err(err, group_squeeze=group_squeeze) - - def add_history(self): - """ - Append a brief history about this tool to the header. - """ - history = "Deprojected by %s (v%s) @ %s" % ( - os.path.basename(sys.argv[0]), __version__, - datetime.utcnow().isoformat()) - for spec in self.spectra: - spec.header.add_history(history) - - def fix_header(self): - # fix header keywords - for spec in self.spectra: - spec.fix_header_keywords( - reset_kw=["RESPFILE", "ANCRFILE", "BACKFILE"]) - - def write(self, filenames=[], clobber=False): - """ - Write the deprojected spectra to output file. - """ - if filenames == []: - filenames = [ spec.outfile for spec in self.spectra ] - for spec, outfile in zip(self.spectra, filenames): - spec.write(filename=outfile, clobber=clobber) - - @staticmethod - def projected_volume(r1, r2, R1, R2): - """ - Calculate the projected volume of a spherical shell of radii r1 -> r2 - onto an annulus on the sky of radius R1 -> R2. - - This volume is the integral: - Int(R=R1,R2) Int(x=sqrt(r1^2-R^2),sqrt(r2^2-R^2)) 2*pi*R dx dR - = - Int(R=R1,R2) 2*pi*R * (sqrt(r2^2-R^2) - sqrt(r1^2-R^2)) dR - - Note that the above integral is only half the total volume - (i.e., front only). - """ - def sqrt_trunc(x): - if x > 0: - return np.sqrt(x) - else: - return 0.0 - # - p1 = sqrt_trunc(r1**2 - R2**2) - p2 = sqrt_trunc(r1**2 - R1**2) - p3 = sqrt_trunc(r2**2 - R2**2) - p4 = sqrt_trunc(r2**2 - R1**2) - return 2.0 * (2.0/3.0) * np.pi * ((p1**3 - p2**3) + (p4**3 - p3**3)) -# class Deprojection }}} - - -# Helper functions {{{ -def calc_median_errors(results): - """ - Calculate the median and errors for the spectral data gathered - through Monte Carlo simulations. - - NOTE: - Errors calculation just use the quantiles, - i.e., 1sigma ~= 68.3% = Q(84.15%) - Q(15.85%) - """ - results = np.array(results) - # `results' now has shape: (mc_times, num_spec, num_channel) - # sort by the Monte Carlo simulation axis - results.sort(0) - mc_times = results.shape[0] - medians = results[ int(mc_times * 0.5) ] - lowerpcs = results[ int(mc_times * 0.1585) ] - upperpcs = results[ int(mc_times * 0.8415) ] - errors = np.sqrt(0.5 * ((medians-lowerpcs)**2 + (upperpcs-medians)**2)) - return (medians, errors) - - -def set_argument(name, default, cmdargs, config): - value = default - if name in config.keys(): - value = config.as_bool(name) - value_cmd = vars(cmdargs)[name] - if value_cmd != default: - value = value_cmd # command arguments overwrite others - return value -# helper functions }}} - - -# main routine {{{ -def main(config, subtract_bkg, fix_negative, mc_times, - verbose=False, clobber=False): - # collect ARFs and RMFs into dictionaries (avoid interpolation every time) - arf_files = set() - rmf_files = set() - for region in config.sections: - config_reg = config[region] - arf_files.add(config_reg.get("arf")) - rmf_files.add(config_reg.get("rmf")) - for reg_in in config_reg["cross_in"].values(): - arf_files.add(reg_in.get("arf")) - arf_files.add(reg_in.get("cross_arf")) - if "cross_out" in config_reg.sections: - for arf in config_reg["cross_out"].as_list("cross_arf"): - arf_files.add(arf) - arf_files = arf_files - set([None]) - arf_dict = { arf: ARF(arf) for arf in arf_files } - rmf_files = rmf_files - set([None]) - rmf_dict = { rmf: RMF(rmf) for rmf in rmf_files } - if verbose: - print("INFO: arf_files:", arf_files, file=sys.stderr) - print("INFO: rmf_files:", rmf_files, file=sys.stderr) - - # get the GROUPING and QUALITY data - grouping_fits = fits.open(config["grouping"]) - grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array - quality = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array - # squeeze the groupped spectral data, etc. - group_squeeze = True - - # crosstalk objects (BEFORE background subtraction) - crosstalks_cleancopy = [] - # crosstalk-corrected spectra - cc_spectra = [] - - # correct crosstalk effects for each region first - for region in config.sections: - if verbose: - print("INFO: processing '%s' ..." % region, file=sys.stderr) - crosstalk = Crosstalk(config.get(region), - arf_dict=arf_dict, rmf_dict=rmf_dict, - grouping=grouping, quality=quality) - crosstalk.apply_grouping(verbose=verbose) - crosstalk.estimate_errors(verbose=verbose) - # keep a (almost) clean copy of the crosstalk object - crosstalks_cleancopy.append(crosstalk.copy()) - if verbose: - print("INFO: doing crosstalk correction ...", file=sys.stderr) - crosstalk.do_correction(subtract_bkg=subtract_bkg, - fix_negative=fix_negative, group_squeeze=group_squeeze, - add_history=True, verbose=verbose) - cc_spectra.append(crosstalk.get_spectrum(copy=True)) - - # load back the crosstalk-corrected spectra for deprojection - if verbose: - print("INFO: preparing spectra for deprojection ...", file=sys.stderr) - deprojection = Deprojection(spectra=cc_spectra, grouping=grouping, - quality=quality, verbose=verbose) - if verbose: - print("INFO: scaling spectra according the region angular size...", - file=sys.stderr) - deprojection.scale() - if verbose: - print("INFO: doing deprojection ...", file=sys.stderr) - deprojection.do_deprojection(add_history=True, verbose=verbose) - deproj_results = [ deprojection.get_spec_data( - group_squeeze=group_squeeze, copy=True) ] - - # Monte Carlo for spectral group error estimation - print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \ - mc_times, file=sys.stderr) - for i in range(mc_times): - if i % 100 == 0: - print("%d..." % i, end="", flush=True, file=sys.stderr) - # correct crosstalk effects - cc_spectra_copy = [] - for crosstalk in crosstalks_cleancopy: - # copy and randomize - crosstalk_copy = crosstalk.copy().randomize() - crosstalk_copy.do_correction(subtract_bkg=subtract_bkg, - fix_negative=fix_negative, group_squeeze=group_squeeze, - add_history=False, verbose=False) - cc_spectra_copy.append(crosstalk_copy.get_spectrum(copy=True)) - # deproject spectra - deprojection_copy = Deprojection(spectra=cc_spectra_copy, - grouping=grouping, quality=quality, verbose=False) - deprojection_copy.scale() - deprojection_copy.do_deprojection(add_history=False, verbose=False) - deproj_results.append(deprojection_copy.get_spec_data( - group_squeeze=group_squeeze, copy=True)) - print("DONE!", flush=True, file=sys.stderr) - - if verbose: - print("INFO: Calculating the median and errors for each spectrum ...", - file=sys.stderr) - medians, errors = calc_median_errors(deproj_results) - deprojection.set_spec_data(medians, group_squeeze=group_squeeze) - deprojection.add_stat_err(errors, group_squeeze=group_squeeze) - if verbose: - print("INFO: Writing the crosstalk-corrected and deprojected " + \ - "spectra with estimated statistical errors ...", file=sys.stderr) - deprojection.fix_header() - deprojection.write(clobber=clobber) -# main routine }}} - - -# main_deprojection routine {{{ -def main_deprojection(config, mc_times, verbose=False, clobber=False): - """ - Only perform the spectral deprojection. - """ - # collect ARFs and RMFs into dictionaries (avoid interpolation every time) - arf_files = set() - rmf_files = set() - for region in config.sections: - config_reg = config[region] - arf_files.add(config_reg.get("arf")) - rmf_files.add(config_reg.get("rmf")) - arf_files = arf_files - set([None]) - arf_dict = { arf: ARF(arf) for arf in arf_files } - rmf_files = rmf_files - set([None]) - rmf_dict = { rmf: RMF(rmf) for rmf in rmf_files } - if verbose: - print("INFO: arf_files:", arf_files, file=sys.stderr) - print("INFO: rmf_files:", rmf_files, file=sys.stderr) - - # get the GROUPING and QUALITY data - grouping_fits = fits.open(config["grouping"]) - grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array - quality = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array - # squeeze the groupped spectral data, etc. - group_squeeze = True - - # load spectra for deprojection - if verbose: - print("INFO: preparing spectra for deprojection ...", file=sys.stderr) - proj_spectra = [] - for region in config.sections: - config_reg = config[region] - specset = SpectrumSet(filename=config_reg["spec"], - outfile=config_reg["outfile"], - arf=arf_dict.get(config_reg["arf"], config_reg["arf"]), - rmf=rmf_dict.get(config_reg["rmf"], config_reg["rmf"]), - bkg=config_reg["bkg"]) - proj_spectra.append(specset) - - deprojection = Deprojection(spectra=proj_spectra, grouping=grouping, - quality=quality, verbose=verbose) - deprojection.apply_grouping(verbose=verbose) - deprojection.estimate_errors() - if verbose: - print("INFO: scaling spectra according the region angular size ...", - file=sys.stderr) - deprojection.scale() - - # keep a (almost) clean copy of the input projected spectra - proj_spectra_cleancopy = [ spec.copy() for spec in proj_spectra ] - - if verbose: - print("INFO: subtract the background ...", file=sys.stderr) - deprojection.subtract_bkg(verbose=verbose) - if verbose: - print("INFO: doing deprojection ...", file=sys.stderr) - deprojection.do_deprojection(add_history=True, verbose=verbose) - deproj_results = [ deprojection.get_spec_data( - group_squeeze=group_squeeze, copy=True) ] - - # Monte Carlo for spectral group error estimation - print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \ - mc_times, file=sys.stderr) - for i in range(mc_times): - if i % 100 == 0: - print("%d..." % i, end="", flush=True, file=sys.stderr) - # copy and randomize the input projected spectra - proj_spectra_copy = [ spec.copy().randomize() - for spec in proj_spectra_cleancopy ] - # deproject spectra - deprojection_copy = Deprojection(spectra=proj_spectra_copy, - grouping=grouping, quality=quality, verbose=False) - deprojection_copy.subtract_bkg(verbose=False) - deprojection_copy.do_deprojection(add_history=False, verbose=False) - deproj_results.append(deprojection_copy.get_spec_data( - group_squeeze=group_squeeze, copy=True)) - print("DONE!", flush=True, file=sys.stderr) - - if verbose: - print("INFO: Calculating the median and errors for each spectrum ...", - file=sys.stderr) - medians, errors = calc_median_errors(deproj_results) - deprojection.set_spec_data(medians, group_squeeze=group_squeeze) - deprojection.add_stat_err(errors, group_squeeze=group_squeeze) - if verbose: - print("INFO: Writing the deprojected spectra " + \ - "with estimated statistical errors ...", file=sys.stderr) - deprojection.fix_header() - deprojection.write(clobber=clobber) -# main_deprojection routine }}} - - -# main_crosstalk routine {{{ -def main_crosstalk(config, subtract_bkg, fix_negative, mc_times, - verbose=False, clobber=False): - """ - Only perform the crosstalk correction. - """ - # collect ARFs and RMFs into dictionaries (avoid interpolation every time) - arf_files = set() - rmf_files = set() - for region in config.sections: - config_reg = config[region] - arf_files.add(config_reg.get("arf")) - rmf_files.add(config_reg.get("rmf")) - for reg_in in config_reg["cross_in"].values(): - arf_files.add(reg_in.get("arf")) - arf_files.add(reg_in.get("cross_arf")) - if "cross_out" in config_reg.sections: - for arf in config_reg["cross_out"].as_list("cross_arf"): - arf_files.add(arf) - arf_files = arf_files - set([None]) - arf_dict = { arf: ARF(arf) for arf in arf_files } - rmf_files = rmf_files - set([None]) - rmf_dict = { rmf: RMF(rmf) for rmf in rmf_files } - if verbose: - print("INFO: arf_files:", arf_files, file=sys.stderr) - print("INFO: rmf_files:", rmf_files, file=sys.stderr) - - # get the GROUPING and QUALITY data - if "grouping" in config.keys(): - grouping_fits = fits.open(config["grouping"]) - grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array - quality = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array - group_squeeze = True - else: - grouping = None - quality = None - group_squeeze = False - - # crosstalk objects (BEFORE background subtraction) - crosstalks_cleancopy = [] - # crosstalk-corrected spectra - cc_spectra = [] - - # correct crosstalk effects for each region first - for region in config.sections: - if verbose: - print("INFO: processing '%s' ..." % region, file=sys.stderr) - crosstalk = Crosstalk(config.get(region), - arf_dict=arf_dict, rmf_dict=rmf_dict, - grouping=grouping, quality=quality) - if grouping is not None: - crosstalk.apply_grouping(verbose=verbose) - crosstalk.estimate_errors(verbose=verbose) - # keep a (almost) clean copy of the crosstalk object - crosstalks_cleancopy.append(crosstalk.copy()) - if verbose: - print("INFO: doing crosstalk correction ...", file=sys.stderr) - crosstalk.do_correction(subtract_bkg=subtract_bkg, - fix_negative=fix_negative, group_squeeze=group_squeeze, - add_history=True, verbose=verbose) - crosstalk.fix_header() - cc_spectra.append(crosstalk.get_spectrum(copy=True)) - - # spectral data of the crosstalk-corrected spectra - cc_results = [] - cc_results.append([ spec.get_data(group_squeeze=group_squeeze, copy=True) - for spec in cc_spectra ]) - - # Monte Carlo for spectral group error estimation - print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \ - mc_times, file=sys.stderr) - for i in range(mc_times): - if i % 100 == 0: - print("%d..." % i, end="", flush=True, file=sys.stderr) - # correct crosstalk effects - cc_spectra_copy = [] - for crosstalk in crosstalks_cleancopy: - # copy and randomize - crosstalk_copy = crosstalk.copy().randomize() - crosstalk_copy.do_correction(subtract_bkg=subtract_bkg, - fix_negative=fix_negative, group_squeeze=group_squeeze, - add_history=False, verbose=False) - cc_spectra_copy.append(crosstalk_copy.get_spectrum(copy=True)) - cc_results.append([ spec.get_data(group_squeeze=group_squeeze, - copy=True) - for spec in cc_spectra_copy ]) - print("DONE!", flush=True, file=sys.stderr) - - if verbose: - print("INFO: Calculating the median and errors for each spectrum ...", - file=sys.stderr) - medians, errors = calc_median_errors(cc_results) - if verbose: - print("INFO: Writing the crosstalk-corrected spectra " + \ - "with estimated statistical errors ...", - file=sys.stderr) - for spec, data, err in zip(cc_spectra, medians, errors): - spec.set_data(data, group_squeeze=group_squeeze) - spec.add_stat_err(err, group_squeeze=group_squeeze) - spec.write(clobber=clobber) -# main_crosstalk routine }}} - - -if __name__ == "__main__": - # arguments' default values - default_mode = "both" - default_mc_times = 5000 - # commandline arguments parser - parser = argparse.ArgumentParser( - description="Correct the crosstalk effects for XMM EPIC spectra", - epilog="Version: %s (%s)" % (__version__, __date__)) - parser.add_argument("config", help="config file in which describes " +\ - "the crosstalk relations ('ConfigObj' syntax)") - parser.add_argument("-m", "--mode", dest="mode", default=default_mode, - help="operation mode (both | crosstalk | deprojection)") - parser.add_argument("-B", "--no-subtract-bkg", dest="subtract_bkg", - action="store_false", help="do NOT subtract background first") - parser.add_argument("-N", "--fix-negative", dest="fix_negative", - action="store_true", help="fix negative channel values") - parser.add_argument("-M", "--mc-times", dest="mc_times", - type=int, default=default_mc_times, - help="Monte Carlo times for error estimation") - parser.add_argument("-C", "--clobber", dest="clobber", - action="store_true", help="overwrite output file if exists") - parser.add_argument("-v", "--verbose", dest="verbose", - action="store_true", help="show verbose information") - args = parser.parse_args() - # merge commandline arguments and config - config = ConfigObj(args.config) - subtract_bkg = set_argument("subtract_bkg", True, args, config) - fix_negative = set_argument("fix_negative", False, args, config) - verbose = set_argument("verbose", False, args, config) - clobber = set_argument("clobber", False, args, config) - # operation mode - mode = config.get("mode", default_mode) - if args.mode != default_mode: - mode = args.mode - # Monte Carlo times - mc_times = config.as_int("mc_times") - if args.mc_times != default_mc_times: - mc_times = args.mc_times - - if mode.lower() == "both": - print("MODE: CROSSTALK + DEPROJECTION", file=sys.stderr) - main(config, subtract_bkg=subtract_bkg, fix_negative=fix_negative, - mc_times=mc_times, verbose=verbose, clobber=clobber) - elif mode.lower() == "deprojection": - print("MODE: DEPROJECTION", file=sys.stderr) - main_deprojection(config, mc_times=mc_times, - verbose=verbose, clobber=clobber) - elif mode.lower() == "crosstalk": - print("MODE: CROSSTALK", file=sys.stderr) - main_crosstalk(config, subtract_bkg=subtract_bkg, - fix_negative=fix_negative, mc_times=mc_times, - verbose=verbose, clobber=clobber) - else: - raise ValueError("Invalid operation mode: %s" % mode) - print(WARNING) - -# vim: set ts=4 sw=4 tw=0 fenc=utf-8 ft=python: # diff --git a/python/radec2deg.py b/python/radec2deg.py deleted file mode 100755 index 9966095..0000000 --- a/python/radec2deg.py +++ /dev/null @@ -1,96 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -# -# Aaron LI -# Created: 2015-04-17 -# Updated: 2016-06-30 -# - -""" -Convert the coordinates data in format (??h??m??s, ??d??m??s) -to format (degree, degree). -""" - -import os -import sys -import re -import getopt -import math - - -USAGE = """Usage: - %(prog)s [ -h ] -i coords_file - -Required arguments: - -i, --infile - infile containing the coordinates - -Optional arguments: - -h, --help -""" % {'prog': os.path.basename(sys.argv[0])} - - -def usage(): - print(USAGE) - - -def ra2deg(h, m, s): - return h * 15.0 + m * 15.0/60.0 + s * 15.0/3600.0 - - -def dec2deg(d, m, s): - if (d >= 0): - sign = 1.0 - else: - sign = -1.0 - return sign * (math.fabs(d) + m/60.0 + s/3600.0) - - -def s_ra2deg(hms): - h, m, s = map(float, re.sub('[hms]', ' ', hms).split()) - return h * 15.0 + m * 15.0/60.0 + s * 15.0/3600.0 - - -def s_dec2deg(dms): - d, m, s = map(float, re.sub('[dms]', ' ', dms).split()) - if (d >= 0): - sign = 1.0 - else: - sign = -1.0 - return sign * (math.fabs(d) + m/60.0 + s/3600.0) - - -def calc_offset(coord1, coord2): - ra1, dec1 = coord1 - ra2, dec2 = coord2 - return math.sqrt((ra1-ra2)**2 + (dec1-dec2)**2) - - -def main(): - try: - opts, args = getopt.getopt(sys.argv[1:], "hi:", - ["help", "infile="]) - except getopt.GetoptError as err: - print(err) - usage() - sys.exit(2) - for opt, arg in opts: - if opt in ("-h", "--help"): - usage() - sys.exit(1) - elif opt in ("-i", "--infile"): - infile = arg - else: - assert False, "unhandled option" - - for line in open(infile): - if re.match(r"^\s*#", line) or re.match(r"^\s*$", line): - continue - ra, dec = line.split() - ra_deg = s_ra2deg(ra) - dec_deg = s_dec2deg(dec) - print("%.8f %.8f" % (ra_deg, dec_deg)) - - -if __name__ == "__main__": - main() diff --git a/python/radec_angle.py b/python/radec_angle.py deleted file mode 100755 index ec01807..0000000 --- a/python/radec_angle.py +++ /dev/null @@ -1,248 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -# -# Aaron LI -# Created: 2015-04-17 -# Updated: 2016-06-30 -# - -""" -Calculate the angles between the given center point to other points -on the sphere. - -The following input formats are supported: - longitude latitude => FMT - ------------------------------------ - ??h??m??s ??d??m??s => "radec" - ?? ?? ?? ?? ?? ?? => "ra3dec3" - deg deg => "degdeg" -""" - -import os -import sys -import re -import getopt -import math - - -USAGE = """Usage: - %(prog)s [ -b -h ] -r RA -d DEC -i infile -f FMT -u UNIT - -Required arguments: - -r, --ra - RA (??h??m??s) of the center - -d, --dec - DEC (??d??m??s) of the center - -i, --infile - input file containing the coordinates data - -f, --format - value: radec | ra3dec3 | degdeg - coordinates format of the input data file - -u, --unit - value: deg | arcmin | arcsec - unit of the output data - -Optional arguments: - -b, --brief - brief mode: only output results - -h, --help -""" % {'prog': os.path.basename(sys.argv[0])} - - -def usage(): - print(USAGE, file=sys.stderr) - - -def ra2deg(h, m, s): - """ - Convert RA (hour, minute, second) to degree. - """ - return h * 15.0 + m * 15.0/60.0 + s * 15.0/3600.0 - - -def dec2deg(d, m, s): - """ - Convert DEC (deg, arcmin, arcsec) to degree. - """ - if (d >= 0): - sign = 1.0 - else: - sign = -1.0 - return sign * (math.fabs(d) + m/60.0 + s/3600.0) - - -def s_ra2deg(hms): - """ - Convert RA string ("??h??m??s") to degree. - """ - h, m, s = map(float, re.sub('[hms]', ' ', hms).split()) - return ra2deg(h, m, s) - - -def s_dec2deg(dms): - """ - Convert DEC string ("??d??m??s") to degree. - """ - d, m, s = map(float, re.sub('[dms]', ' ', dms).split()) - return dec2deg(d, m, s) - - -def deg2rad(deg): - """ - Convert unit from deg to rad. - """ - return deg * math.pi / 180.0 - - -def rad2deg(rad): - """ - Convert unit from rad to deg. - """ - return rad * 180.0 / math.pi - - -def central_angle(p1, p2, unit="deg"): - """ - Calculate the central angle between the two points on the sphere. - - Input parameters: - p1, p2: (longitude, latitude), coorindates of the two points - - Algorithm: - (radial, azimuthal, polar): (r, theta, phi) - central_angle: alpha - longitude: lambda = theta - latitude: delta = 90 - phi - colatitude: phi - - Unit vector: - \hat{r}_1 = (cos(theta1) sin(phi1), sin(theta1) sin(phi1), cos(phi1)) - = (cos(lambda1) cos(delta1), sin(lambda1) cos(delta1), sin(delta1)) - \hat{r}_2 = (cos(theta2) sin(phi2), sin(theta2) sin(phi2), cos(phi2)) - = (cos(lambda2) cos(delta2), sin(lambda2) cos(delta2), sin(delta2)) - - Therefore the angle (alpha) between \hat{r}_1 and \hat{r}_2: - cos(alpha) = \hat{r}_1 \cdot \hat{r}_2 - = cos(delta1) cos(delta2) cos(lambda1-lambda2) - + sin(delta1) sin(delta2) - - References: - [1] Spherical Coordinates - Wolfram MathWorld - http://mathworld.wolfram.com/SphericalCoordinates.html - Equation (19) - [2] Great Circle - Wolfram MathWorld - http://mathworld.wolfram.com/GreatCircle.html - Equation (1), (2), (4) - """ - lbd1, delta1 = map(deg2rad, p1) - lbd2, delta2 = map(deg2rad, p2) - dotvalue = (math.cos(delta1) * math.cos(delta2) * math.cos(lbd1-lbd2) + - math.sin(delta1) * math.sin(delta2)) - alpha = math.acos(dotvalue) - if unit == "rad": - return alpha - elif unit == "arcmin": - return rad2deg(alpha) * 60.0 - elif unit == "arcsec": - return rad2deg(alpha) * 60.0*60.0 - else: - # default: degree - return rad2deg(alpha) - - -def main(): - # Mandatory arguments - center_ra = None - center_dec = None - infile = None - - # Default parameters - unit = "arcmin" - fmt = "radec" # default format: "??h??m??s ??d??m??s" - - # Process command line arguments - try: - opts, args = getopt.getopt(sys.argv[1:], "bd:f:hi:r:u:", - ["brief", "dec=", "format=", "help", - "infile=", "ra=", "unit="]) - except getopt.GetoptError as err: - print(err) - usage() - sys.exit(2) - brief = False # brief mode - for opt, arg in opts: - if opt in ("-h", "--help"): - usage() - sys.exit(1) - elif opt in ("-b", "--brief"): - brief = True - elif opt in ("-d", "--dec"): - center_dec = arg - elif opt in ("-r", "--ra"): - center_ra = arg - elif opt in ("-i", "--infile"): - infile = arg - elif opt in ("-f", "--format"): - fmt = arg - elif opt in ("-u", "--unit"): - unit = arg - else: - assert False, "unhandled option" - - # Check mandatory arguments - if not center_ra: - print("Error: --ra argument required!", file=sys.stderr) - if not center_dec: - print("Error: --dec argument required!", file=sys.stderr) - if not infile: - print("Error: --infile argument required!", file=sys.stderr) - - if fmt == "radec": - center_ra_deg = s_ra2deg(center_ra) - center_dec_deg = s_dec2deg(center_dec) - elif fmt == "ra3dec3": - ra_h, ra_m, ra_s = map(float, center_ra.split()) - dec_d, dec_m, dec_s = map(float, center_dec.split()) - center_ra_deg = ra2deg(ra_h, ra_m, ra_s) - center_dec_deg = dec2deg(dec_d, dec_m, dec_s) - elif fmt == "degdeg": - center_ra_deg = float(center_ra) - center_dec_deg = float(center_dec) - else: - print("Error: unknown format type: %s" % fmt, file=sys.stderr) - sys.exit(2) - - if not brief: - print("# Central_angle (unit: %s)" % unit) - - datafile = open(infile, "r") - for line in datafile: - if re.match(r"^\s*#", line): - # skip comments - continue - elif re.match(r"^\s*$", line): - # skip blank line - continue - # coordinate format - if fmt == "radec": - ra, dec = line.split() - ra_deg = s_ra2deg(ra) - dec_deg = s_dec2deg(dec) - elif fmt == "ra3dec3": - ra_h, ra_m, ra_s, dec_d, dec_m, dec_s = map(float, line.split()) - ra_deg = ra2deg(ra_h, ra_m, ra_s) - dec_deg = dec2deg(dec_d, dec_m, dec_s) - elif fmt == "degdeg": - ra_deg, dec_deg = map(float, line.split()) - else: - print("Error: unknown format type: %s" % fmt, file=sys.stderr) - sys.exit(2) - # calculate angle - angle = central_angle((center_ra_deg, center_dec_deg), - (ra_deg, dec_deg), unit=unit) - print("%.10f" % angle) - datafile.close() - - -if __name__ == "__main__": - main() diff --git a/python/randomize_events.py b/python/randomize_events.py deleted file mode 100755 index e1a6e31..0000000 --- a/python/randomize_events.py +++ /dev/null @@ -1,72 +0,0 @@ -#!/usr/bin/env python3 -# -# Randomize the (X,Y) position of each X-ray photon events according -# to a Gaussian distribution of given sigma. -# -# References: -# [1] G. Scheellenberger, T.H. Reiprich, L. Lovisari, J. Nevalainen & L. David -# 2015, A&A, 575, A30 -# -# -# Aaron LI -# Created: 2016-03-24 -# Updated: 2016-03-24 -# - -from astropy.io import fits -import numpy as np - -import os -import sys -import datetime -import argparse - - -CHANDRA_ARCSEC_PER_PIXEL = 0.492 - -def randomize_events(infile, outfile, sigma, clobber=False): - """ - Randomize the position (X,Y) of each X-ray event according to a - specified size/sigma Gaussian distribution. - """ - sigma_pix = sigma / CHANDRA_ARCSEC_PER_PIXEL - evt_fits = fits.open(infile) - evt_table = evt_fits[1].data - # (X,Y) physical coordinate - evt_x = evt_table["x"] - evt_y = evt_table["y"] - rand_x = np.random.normal(scale=sigma_pix, size=evt_x.shape)\ - .astype(evt_x.dtype) - rand_y = np.random.normal(scale=sigma_pix, size=evt_y.shape)\ - .astype(evt_y.dtype) - evt_x += rand_x - evt_y += rand_y - # Add history to FITS header - evt_hdr = evt_fits[1].header - evt_hdr.add_history("TOOL: %s @ %s" % ( - os.path.basename(sys.argv[0]), - datetime.datetime.utcnow().isoformat())) - evt_hdr.add_history("COMMAND: %s" % " ".join(sys.argv)) - evt_fits.writeto(outfile, clobber=clobber, checksum=True) - - -def main(): - parser = argparse.ArgumentParser( - description="Randomize the (X,Y) of each X-ray event") - parser.add_argument("infile", help="input event file") - parser.add_argument("outfile", help="output randomized event file") - parser.add_argument("-s", "--sigma", dest="sigma", - required=True, type=float, - help="sigma/size of the Gaussian distribution used" + \ - "to randomize the position of events (unit: arcsec)") - parser.add_argument("-C", "--clobber", dest="clobber", - action="store_true", help="overwrite output file if exists") - args = parser.parse_args() - - randomize_events(args.infile, args.outfile, - sigma=args.sigma, clobber=args.clobber) - - -if __name__ == "__main__": - main() - |