aboutsummaryrefslogtreecommitdiffstats
path: root/python
diff options
context:
space:
mode:
Diffstat (limited to 'python')
-rwxr-xr-xpython/adjust_spectrum_error.py170
-rwxr-xr-xpython/crosstalk_deprojection.py1812
-rwxr-xr-xpython/radec2deg.py96
-rwxr-xr-xpython/radec_angle.py248
-rwxr-xr-xpython/randomize_events.py72
5 files changed, 0 insertions, 2398 deletions
diff --git a/python/adjust_spectrum_error.py b/python/adjust_spectrum_error.py
deleted file mode 100755
index 0f80ec7..0000000
--- a/python/adjust_spectrum_error.py
+++ /dev/null
@@ -1,170 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-
-"""
-Squeeze the spectrum according to the grouping specification, then
-calculate the statistical errors for each group, and apply error
-adjustments (e.g., incorporate the systematic uncertainties).
-"""
-
-__version__ = "0.1.0"
-__date__ = "2016-01-11"
-
-
-import sys
-import argparse
-
-import numpy as np
-from astropy.io import fits
-
-
-class Spectrum:
- """
- Spectrum class to keep spectrum information and perform manipulations.
- """
- header = None
- channel = None
- counts = None
- grouping = None
- quality = None
-
- def __init__(self, specfile):
- f = fits.open(specfile)
- spechdu = f['SPECTRUM']
- self.header = spechdu.header
- self.channel = spechdu.data.field('CHANNEL')
- self.counts = spechdu.data.field('COUNTS')
- self.grouping = spechdu.data.field('GROUPING')
- self.quality = spechdu.data.field('QUALITY')
- f.close()
-
- def squeezeByGrouping(self):
- """
- Squeeze the spectrum according to the grouping specification,
- i.e., sum the counts belonging to the same group, and place the
- sum as the first channel within each group with other channels
- of counts zero's.
- """
- counts_squeezed = []
- cnt_sum = 0
- cnt_num = 0
- first = True
- for grp, cnt in zip(self.grouping, self.counts):
- if first and grp == 1:
- # first group
- cnt_sum = cnt
- cnt_num = 1
- first = False
- elif grp == 1:
- # save previous group
- counts_squeezed.append(cnt_sum)
- counts_squeezed += [ 0 for i in range(cnt_num-1) ]
- # start new group
- cnt_sum = cnt
- cnt_num = 1
- else:
- # group continues
- cnt_sum += cnt
- cnt_num += 1
- # last group
- # save previous group
- counts_squeezed.append(cnt_sum)
- counts_squeezed += [ 0 for i in range(cnt_num-1) ]
- self.counts_squeezed = np.array(counts_squeezed, dtype=np.int32)
-
- def calcStatErr(self, gehrels=False):
- """
- Calculate the statistical errors for the grouped channels,
- and save as the STAT_ERR column.
- """
- idx_nz = np.nonzero(self.counts_squeezed)
- stat_err = np.zeros(self.counts_squeezed.shape)
- if gehrels:
- # Gehrels
- stat_err[idx_nz] = 1 + np.sqrt(self.counts_squeezed[idx_nz] + 0.75)
- else:
- stat_err[idx_nz] = np.sqrt(self.counts_squeezed[idx_nz])
- self.stat_err = stat_err
-
- @staticmethod
- def parseSysErr(syserr):
- """
- Parse the string format of syserr supplied in the commandline.
- """
- items = map(str.strip, syserr.split(','))
- syserr_spec = []
- for item in items:
- spec = item.split(':')
- try:
- spec = (int(spec[0]), int(spec[1]), float(spec[2]))
- except:
- raise ValueError("invalid syserr specficiation")
- syserr_spec.append(spec)
- return syserr_spec
-
- def applySysErr(self, syserr):
- """
- Apply systematic error adjustments to the above calculated
- statistical errors.
- """
- syserr_spec = self.parseSysErr(syserr)
- for lo, hi, se in syserr_spec:
- err_adjusted = self.stat_err[(lo-1):(hi-1)] * np.sqrt(1+se)
- self.stat_err_adjusted = err_adjusted
-
- def updateHeader(self):
- """
- Update header accordingly.
- """
- # POISSERR
- self.header['POISSERR'] = False
-
- def write(self, filename, clobber=False):
- """
- Write the updated/modified spectrum block to file.
- """
- channel_col = fits.Column(name='CHANNEL', format='J',
- array=self.channel)
- counts_col = fits.Column(name='COUNTS', format='J',
- array=self.counts_squeezed)
- stat_err_col = fits.Column(name='STAT_ERR', format='D',
- array=self.stat_err_adjusted)
- grouping_col = fits.Column(name='GROUPING', format='I',
- array=self.grouping)
- quality_col = fits.Column(name='QUALITY', format='I',
- array=self.quality)
- spec_cols = fits.ColDefs([channel_col, counts_col, stat_err_col,
- grouping_col, quality_col])
- spechdu = fits.BinTableHDU.from_columns(spec_cols, header=self.header)
- spechdu.writeto(filename, clobber=clobber)
-
-
-def main():
- parser = argparse.ArgumentParser(
- description="Apply systematic error adjustments to spectrum.")
- parser.add_argument("-V", "--version", action="version",
- version="%(prog)s " + "%s (%s)" % (__version__, __date__))
- parser.add_argument("infile", help="input spectrum file")
- parser.add_argument("outfile", help="output adjusted spectrum file")
- parser.add_argument("-e", "--syserr", dest="syserr", required=True,
- help="systematic error specification; " + \
- "syntax: ch1low:ch1high:syserr1,...")
- parser.add_argument("-C", "--clobber", dest="clobber",
- action="store_true", help="overwrite output file if exists")
- parser.add_argument("-G", "--gehrels", dest="gehrels",
- action="store_true", help="use Gehrels error?")
- args = parser.parse_args()
-
- spec = Spectrum(args.infile)
- spec.squeezeByGrouping()
- spec.calcStatErr(gehrels=args.gehrels)
- spec.applySysErr(syserr=args.syserr)
- spec.updateHeader()
- spec.write(args.outfile, clobber=args.clobber)
-
-
-if __name__ == "__main__":
- main()
-
-
-# vim: set ts=4 sw=4 tw=0 fenc=utf-8 ft=python: #
diff --git a/python/crosstalk_deprojection.py b/python/crosstalk_deprojection.py
deleted file mode 100755
index b08a66a..0000000
--- a/python/crosstalk_deprojection.py
+++ /dev/null
@@ -1,1812 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# References:
-# [1] Definition of RMF and ARF file formats
-# https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
-# [2] The OGIP Spectral File Format
-# https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/summary/ogip_92_007_summary.html
-# [3] CIAO: Auxiliary Response File
-# http://cxc.harvard.edu/ciao/dictionary/arf.html
-# [4] CIAO: Redistribution Matrix File
-# http://cxc.harvard.edu/ciao/dictionary/rmf.html
-# [5] astropy - FITS format code
-# http://docs.astropy.org/en/stable/io/fits/usage/table.html#column-creation
-# [6] XSPEC - Spectral Fitting
-# https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecSpectralFitting.html
-# [7] Direct X-ray Spectra Deprojection
-# https://www-xray.ast.cam.ac.uk/papers/dsdeproj/
-# Sanders & Fabian 2007, MNRAS, 381, 1381
-#
-#
-# Weitian LI
-# Created: 2016-03-26
-# Updated: 2016-06-07
-#
-# Change log:
-# 2016-06-07:
-# * Explain the errors/uncertainties calculation approach
-# 2016-04-20:
-# * Add argument 'add_history' to some methods (to avoid many duplicated
-# histories due to Monte Carlo)
-# * Rename 'reset_header_keywords()' to 'fix_header_keywords()',
-# and add mandatory spectral keywords if missing
-# * Add method 'fix_header()' to class 'Crosstalk' and 'Deprojection',
-# and fix the headers before write spectra
-# 2016-04-19:
-# * Ignore numpy error due to division by zero
-# * Update tool description and sample configuration
-# * Add two other main methods: `main_deprojection()' and `main_crosstalk()'
-# * Add argument 'group_squeeze' to some methods for better performance
-# * Rename from 'correct_crosstalk.py' to 'crosstalk_deprojection.py'
-# 2016-04-18:
-# * Implement deprojection function: class Deprojection
-# * Support spectral grouping (supply the grouping specification)
-# * Add grouping, estimate_errors, copy, randomize, etc. methods
-# * Utilize the Monte Carlo techniques to estimate the final spectral errors
-# * Collect all ARFs and RMFs within dictionaries
-# 2016-04-06:
-# * Fix `RMF: get_rmfimg()' for XMM EPIC RMF
-# 2016-04-02:
-# * Interpolate ARF in order to match the spectral channel energies
-# * Add version and date information
-# * Update documentations
-# * Update header history contents
-# 2016-04-01:
-# * Greatly update the documentations (e.g., description, sample config)
-# * Add class `RMF'
-# * Add method `get_energy()' for class `ARF'
-# * Split out class `SpectrumSet' from `Spectrum'
-# * Implement background subtraction
-# * Add config `subtract_bkg' and corresponding argument
-#
-# XXX/FIXME:
-# * Deprojection: account for ARF differences across different regions
-#
-# TODO:
-# * Split classes ARF, RMF, Spectrum, and SpectrumSet to a separate module
-#
-
-__version__ = "0.5.3"
-__date__ = "2016-06-07"
-
-
-"""
-Correct the crosstalk effect of XMM spectra by subtracting the photons
-that scattered from the surrounding regions due to the finite PSF, and
-by compensating the photons that scattered to the surrounding regions,
-according to the generated crosstalk ARFs by SAS `arfgen'.
-
-After the crosstalk effect being corrected, the deprojection is performed
-to deproject the crosstalk-corrected spectra to derive the spectra with
-both the crosstalk effect and projection effect corrected.
-
-
-Sample config file (in `ConfigObj' syntax):
------------------------------------------------------------
-# operation mode: deprojection, crosstalk, or both (default)
-mode = both
-# supply a *groupped* spectrum (from which the "GROUPING" and "QUALITY"
-# are used to group all the following spectra)
-grouping = spec_grp.pi
-# whether to subtract the background before crosstalk correction
-subtract_bkg = True
-# whether to fix the negative channel values due to spectral subtractions
-fix_negative = False
-# Monte Carlo times for spectral error estimation
-mc_times = 5000
-# show progress details and verbose information
-verbose = True
-# overwrite existing files
-clobber = False
-
-# NOTE:
-# ONLY specifiy ONE set of projected spectra (i.e., from the same detector
-# of one observation), since ALL the following specified spectra will be
-# used for the deprojection.
-
-[reg1]
-...
-
-[reg2]
-outfile = deprojcc_reg2.pi
-spec = reg2.pi
-arf = reg2.arf
-rmf = reg2.rmf
-bkg = reg2_bkg.pi
- [[cross_in]]
- [[[in1]]]
- spec = reg1.pi
- arf = reg1.arf
- rmf = reg1.rmf
- bkg = reg1_bkg.pi
- cross_arf = reg_1-2.arf
- [[[in2]]]
- spec = reg3.pi
- arf = reg3.arf
- rmf = reg3.rmf
- bkg = reg3_bkg.pi
- cross_arf = reg_3-2.arf
- [[cross_out]]
- cross_arf = reg_2-1.arf, reg_2-3.arf
-
-[...]
-...
------------------------------------------------------------
-"""
-
-WARNING = """
-********************************* WARNING ************************************
-The generated spectra are substantially modified (e.g., scale, add, subtract),
-therefore, take special care when interpretating the fitting results,
-especially the metal abundances and normalizations.
-******************************************************************************
-"""
-
-
-import sys
-import os
-import argparse
-from datetime import datetime
-from copy import copy
-
-import numpy as np
-import scipy as sp
-import scipy.interpolate
-from astropy.io import fits
-from configobj import ConfigObj
-
-
-def group_data(data, grouping):
- """
- Group the data with respect to the supplied `grouping' specification
- (i.e., "GROUPING" columns of a spectrum). The channel counts of the
- same group are summed up and assigned to the FIRST channel of this
- group, while the OTHRE channels are all set to ZERO.
- """
- data_grp = np.array(data).copy()
- for i in reversed(range(len(data))):
- if grouping[i] == 1:
- # the beginning channel of a group
- continue
- else:
- # other channels of a group
- data_grp[i-1] += data_grp[i]
- data_grp[i] = 0
- assert np.isclose(sum(data_grp), sum(data))
- return data_grp
-
-
-class ARF: # {{{
- """
- Class to handle the ARF (ancillary/auxiliary response file),
- which contains the combined instrumental effective area
- (telescope/filter/detector) and the quantum efficiency (QE) as a
- function of energy averaged over time.
- The effective area is [cm^2], and the QE is [counts/photon]; they are
- multiplied together to create the ARF, resulting in [cm^2 counts/photon].
-
- **CAVEAT/NOTE**:
- Generally, the "ENERG_LO" and "ENERG_HI" columns of an ARF are *different*
- to the "E_MIN" and "E_MAX" columns of a RMF (which are corresponding
- to the spectrum channel energies).
- For the XMM EPIC *pn* and Chandra *ACIS*, the generated ARF does NOT have
- the same number of data points to that of spectral channels, i.e., the
- "ENERG_LO" and "ENERG_HI" columns of ARF is different to the "E_MIN" and
- "E_MAX" columns of RMF.
- Therefore it is necessary to interpolate and extrapolate the ARF curve
- in order to match the spectrum (or RMF "EBOUNDS" extension).
- As for the XMM EPIC *MOS1* and *MOS2*, the ARF data points match the
- spectral channels, i.e., the energy positions of each ARF data point and
- spectral channel are consistent. Thus the interpolation is not needed.
-
- References:
- [1] CIAO: Auxiliary Response File
- http://cxc.harvard.edu/ciao/dictionary/arf.html
- [2] Definition of RMF and ARF file formats
- https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
- """
- filename = None
- fitsobj = None
- # only consider the "SPECTRUM" extension
- header = None
- energ_lo = None
- energ_hi = None
- specresp = None
- # function of the interpolated ARF
- f_interp = None
- # energies of the spectral channels
- energy_channel = None
- # spectral channel grouping specification
- grouping = None
- groupped = False
- # groupped ARF channels with respect to the grouping
- specresp_grp = None
-
- def __init__(self, filename):
- self.filename = filename
- self.fitsobj = fits.open(filename)
- ext_specresp = self.fitsobj["SPECRESP"]
- self.header = ext_specresp.header
- self.energ_lo = ext_specresp.data["ENERG_LO"]
- self.energ_hi = ext_specresp.data["ENERG_HI"]
- self.specresp = ext_specresp.data["SPECRESP"]
-
- def get_data(self, groupped=False, group_squeeze=False, copy=True):
- if groupped:
- specresp = self.specresp_grp
- if group_squeeze:
- specresp = specresp[self.grouping == 1]
- else:
- specresp = self.specresp
- if copy:
- return specresp.copy()
- else:
- return specresp
-
- def get_energy(self, mean="geometric"):
- """
- Return the mean energy values of the ARF.
-
- Arguments:
- * mean: type of the mean energy:
- + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max)
- + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max)
- """
- if mean == "geometric":
- energy = np.sqrt(self.energ_lo * self.energ_hi)
- elif mean == "arithmetic":
- energy = 0.5 * (self.energ_lo + self.energ_hi)
- else:
- raise ValueError("Invalid mean type: %s" % mean)
- return energy
-
- def interpolate(self, x=None, verbose=False):
- """
- Cubic interpolate the ARF curve using `scipy.interpolate'
-
- If the requested point is outside of the data range, the
- fill value of *zero* is returned.
-
- Arguments:
- * x: points at which the interpolation to be calculated.
-
- Return:
- If x is None, then the interpolated function is returned,
- otherwise, the interpolated data are returned.
- """
- if not hasattr(self, "f_interp") or self.f_interp is None:
- energy = self.get_energy()
- arf = self.get_data(copy=False)
- if verbose:
- print("INFO: interpolating '%s' (this may take a while) ..." \
- % self.filename, file=sys.stderr)
- f_interp = sp.interpolate.interp1d(energy, arf, kind="cubic",
- bounds_error=False, fill_value=0.0, assume_sorted=True)
- self.f_interp = f_interp
- if x is not None:
- return self.f_interp(x)
- else:
- return self.f_interp
-
- def apply_grouping(self, energy_channel, grouping, verbose=False):
- """
- Group the ARF channels (INTERPOLATED with respect to the spectral
- channels) by the supplied grouping specification.
-
- Arguments:
- * energy_channel: energies of the spectral channel
- * grouping: spectral grouping specification
-
- Return: `self.specresp_grp'
- """
- if self.groupped:
- return
- if verbose:
- print("INFO: Grouping spectrum '%s' ..." % self.filename,
- file=sys.stderr)
- self.energy_channel = energy_channel
- self.grouping = grouping
- # interpolate the ARF w.r.t the spectral channel energies
- arf_interp = self.interpolate(x=energy_channel, verbose=verbose)
- self.specresp_grp = group_data(arf_interp, grouping)
- self.groupped = True
-# class ARF }}}
-
-
-class RMF: # {{{
- """
- Class to handle the RMF (redistribution matrix file),
- which maps from energy space into detector pulse height (or position)
- space. Since detectors are not perfect, this involves a spreading of
- the observed counts by the detector resolution, which is expressed as
- a matrix multiplication.
- For X-ray spectral analysis, the RMF encodes the probability R(E,p)
- that a detected photon of energy E will be assisgned to a given
- channel value (PHA or PI) of p.
-
- The standard Legacy format [2] for the RMF uses a binary table in which
- each row contains R(E,p) for a single value of E as a function of p.
- Non-zero sequences of elements of R(E,p) are encoded using a set of
- variable length array columns. This format is compact but hard to
- manipulate and understand.
-
- **CAVEAT/NOTE**:
- + See also the above ARF CAVEAT/NOTE.
- + The "EBOUNDS" extension contains the `CHANNEL', `E_MIN' and `E_MAX'
- columns. This `CHANNEL' is the same as that of a spectrum. Therefore,
- the energy values determined from the `E_MIN' and `E_MAX' columns are
- used to interpolate and extrapolate the ARF curve.
- + The `ENERG_LO' and `ENERG_HI' columns of the "MATRIX" extension are
- the same as that of a ARF.
-
- References:
- [1] CIAO: Redistribution Matrix File
- http://cxc.harvard.edu/ciao/dictionary/rmf.html
- [2] Definition of RMF and ARF file formats
- https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
- """
- filename = None
- fitsobj = None
- ## extension "MATRIX"
- hdr_matrix = None
- energ_lo = None
- energ_hi = None
- n_grp = None
- f_chan = None
- n_chan = None
- # raw squeezed RMF matrix data
- matrix = None
- ## extension "EBOUNDS"
- hdr_ebounds = None
- channel = None
- e_min = None
- e_max = None
- ## converted 2D RMF matrix/image from the squeezed binary table
- # size: len(energ_lo) x len(channel)
- rmfimg = None
-
- def __init__(self, filename):
- self.filename = filename
- self.fitsobj = fits.open(filename)
- ## "MATRIX" extension
- ext_matrix = self.fitsobj["MATRIX"]
- self.hdr_matrix = ext_matrix.header
- self.energ_lo = ext_matrix.data["ENERG_LO"]
- self.energ_hi = ext_matrix.data["ENERG_HI"]
- self.n_grp = ext_matrix.data["N_GRP"]
- self.f_chan = ext_matrix.data["F_CHAN"]
- self.n_chan = ext_matrix.data["N_CHAN"]
- self.matrix = ext_matrix.data["MATRIX"]
- ## "EBOUNDS" extension
- ext_ebounds = self.fitsobj["EBOUNDS"]
- self.hdr_ebounds = ext_ebounds.header
- self.channel = ext_ebounds.data["CHANNEL"]
- self.e_min = ext_ebounds.data["E_MIN"]
- self.e_max = ext_ebounds.data["E_MAX"]
-
- def get_energy(self, mean="geometric"):
- """
- Return the mean energy values of the RMF "EBOUNDS".
-
- Arguments:
- * mean: type of the mean energy:
- + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max)
- + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max)
- """
- if mean == "geometric":
- energy = np.sqrt(self.e_min * self.e_max)
- elif mean == "arithmetic":
- energy = 0.5 * (self.e_min + self.e_max)
- else:
- raise ValueError("Invalid mean type: %s" % mean)
- return energy
-
- def get_rmfimg(self):
- """
- Convert the RMF data in squeezed binary table (standard Legacy format)
- to a 2D image/matrix.
- """
- def _make_rmfimg_row(n_channel, dtype, f_chan, n_chan, mat_row):
- # make sure that `f_chan' and `n_chan' are 1-D numpy array
- f_chan = np.array(f_chan).reshape(-1)
- f_chan -= 1 # FITS indices are 1-based
- n_chan = np.array(n_chan).reshape(-1)
- idx = np.concatenate([ np.arange(f, f+n) \
- for f, n in zip(f_chan, n_chan) ])
- rmfrow = np.zeros(n_channel, dtype=dtype)
- rmfrow[idx] = mat_row
- return rmfrow
- #
- if self.rmfimg is None:
- # Make the 2D RMF matrix/image
- n_energy = len(self.energ_lo)
- n_channel = len(self.channel)
- rmf_dtype = self.matrix[0].dtype
- rmfimg = np.zeros(shape=(n_energy, n_channel), dtype=rmf_dtype)
- for i in np.arange(n_energy)[self.n_grp > 0]:
- rmfimg[i, :] = _make_rmfimg_row(n_channel, rmf_dtype,
- self.f_chan[i], self.n_chan[i], self.matrix[i])
- self.rmfimg = rmfimg
- return self.rmfimg
-
- def write_rmfimg(self, outfile, clobber=False):
- rmfimg = self.get_rmfimg()
- # merge headers
- header = self.hdr_matrix.copy(strip=True)
- header.extend(self.hdr_ebounds.copy(strip=True))
- outfits = fits.PrimaryHDU(data=rmfimg, header=header)
- outfits.writeto(outfile, checksum=True, clobber=clobber)
-# class RMF }}}
-
-
-class Spectrum: # {{{
- """
- Class that deals with the X-ray spectrum file (usually *.pi).
- """
- filename = None
- # FITS object return by `fits.open()'
- fitsobj = None
- # header of "SPECTRUM" extension
- header = None
- # "SPECTRUM" extension data
- channel = None
- # name of the spectrum data column (i.e., type, "COUNTS" or "RATE")
- spec_type = None
- # unit of the spectrum data ("count" for "COUNTS", "count/s" for "RATE")
- spec_unit = None
- # spectrum data
- spec_data = None
- # estimated spectral errors for each channel/group
- spec_err = None
- # statistical errors for each channel/group
- stat_err = None
- # grouping and quality
- grouping = None
- quality = None
- # whether the spectral data being groupped
- groupped = False
- # several important keywords
- EXPOSURE = None
- BACKSCAL = None
- AREASCAL = None
- RESPFILE = None
- ANCRFILE = None
- BACKFILE = None
- # numpy dtype and FITS format code of the spectrum data
- spec_dtype = None
- spec_fits_format = None
- # output filename for writing the spectrum if no filename provided
- outfile = None
-
- def __init__(self, filename, outfile=None):
- self.filename = filename
- self.fitsobj = fits.open(filename)
- ext_spec = self.fitsobj["SPECTRUM"]
- self.header = ext_spec.header.copy(strip=True)
- colnames = ext_spec.columns.names
- if "COUNTS" in colnames:
- self.spec_type = "COUNTS"
- elif "RATE" in colnames:
- self.spec_type = "RATE"
- else:
- raise ValueError("Invalid spectrum file")
- self.channel = ext_spec.data.columns["CHANNEL"].array
- col_spec_data = ext_spec.data.columns[self.spec_type]
- self.spec_data = col_spec_data.array.copy()
- self.spec_unit = col_spec_data.unit
- self.spec_dtype = col_spec_data.dtype
- self.spec_fits_format = col_spec_data.format
- # grouping and quality
- if "GROUPING" in colnames:
- self.grouping = ext_spec.data.columns["GROUPING"].array
- if "QUALITY" in colnames:
- self.quality = ext_spec.data.columns["QUALITY"].array
- # keywords
- self.EXPOSURE = self.header.get("EXPOSURE")
- self.BACKSCAL = self.header.get("BACKSCAL")
- self.AREASCAL = self.header.get("AREASCAL")
- self.RESPFILE = self.header.get("RESPFILE")
- self.ANCRFILE = self.header.get("ANCRFILE")
- self.BACKFILE = self.header.get("BACKFILE")
- # output filename
- self.outfile = outfile
-
- def get_data(self, group_squeeze=False, copy=True):
- """
- Get the spectral data (i.e., self.spec_data).
-
- Arguments:
- * group_squeeze: whether squeeze the spectral data according to
- the grouping (i.e., exclude the channels that
- are not the first channel of the group, which
- also have value of ZERO).
- This argument is effective only the grouping
- being applied.
- """
- if group_squeeze and self.groupped:
- spec_data = self.spec_data[self.grouping == 1]
- else:
- spec_data = self.spec_data
- if copy:
- return spec_data.copy()
- else:
- return spec_data
-
- def get_channel(self, copy=True):
- if copy:
- return self.channel.copy()
- else:
- return self.channel
-
- def set_data(self, spec_data, group_squeeze=True):
- """
- Set the spectral data of this spectrum to the supplied data.
- """
- if group_squeeze and self.groupped:
- assert sum(self.grouping == 1) == len(spec_data)
- self.spec_data[self.grouping == 1] = spec_data
- else:
- assert len(self.spec_data) == len(spec_data)
- self.spec_data = spec_data.copy()
-
- def add_stat_err(self, stat_err, group_squeeze=True):
- """
- Add the "STAT_ERR" column as the statistical errors of each spectral
- group, which are estimated by utilizing the Monte Carlo techniques.
- """
- self.stat_err = np.zeros(self.spec_data.shape,
- dtype=self.spec_data.dtype)
- if group_squeeze and self.groupped:
- assert sum(self.grouping == 1) == len(stat_err)
- self.stat_err[self.grouping == 1] = stat_err
- else:
- assert len(self.stat_err) == len(stat_err)
- self.stat_err = stat_err.copy()
- self.header["POISSERR"] = False
-
- def apply_grouping(self, grouping=None, quality=None):
- """
- Apply the spectral channel grouping specification to the spectrum.
-
- NOTE:
- * The spectral data (i.e., self.spec_data) is MODIFIED!
- * The spectral data within the same group are summed up.
- * The self grouping is overwritten if `grouping' is supplied, as well
- as the self quality.
- """
- if grouping is not None:
- self.grouping = grouping
- if quality is not None:
- self.quality = quality
- self.spec_data = group_data(self.spec_data, self.grouping)
- self.groupped = True
-
- def estimate_errors(self, gehrels=True):
- """
- Estimate the statistical errors of each spectral group (after
- applying grouping) for the source spectrum (and background spectrum).
-
- If `gehrels=True', the statistical error for a spectral group with
- N photons is given by `1 + sqrt(N + 0.75)'; otherwise, the error
- is given by `sqrt(N)'.
-
- Results: `self.spec_err'
- """
- eps = 1.0e-10
- if gehrels:
- self.spec_err = 1.0 + np.sqrt(self.spec_data + 0.75)
- else:
- self.spec_err = np.sqrt(self.spec_data)
- # replace the zeros with a very small value (because
- # `np.random.normal' requires `scale' > 0)
- self.spec_err[self.spec_err <= 0.0] = eps
-
- def copy(self):
- """
- Return a copy of this object, with the `np.ndarray' properties are
- copied.
- """
- new = copy(self)
- for k, v in self.__dict__.items():
- if isinstance(v, np.ndarray):
- setattr(new, k, v.copy())
- return new
-
- def randomize(self):
- """
- Randomize the spectral data according to the estimated spectral
- group errors by assuming the normal distribution.
-
- NOTE: this method should be called AFTER the `copy()' method.
- """
- if self.spec_err is None:
- raise ValueError("No valid 'spec_err' presents")
- if self.groupped:
- idx = self.grouping == 1
- self.spec_data[idx] = np.random.normal(self.spec_data[idx],
- self.spec_err[idx])
- else:
- self.spec_data = np.random.normal(self.spec_data, self.spec_err)
- return self
-
- def fix_header_keywords(self,
- reset_kw=["ANCRFILE", "RESPFILE", "BACKFILE"]):
- """
- Reset the keywords to "NONE" to avoid confusion or mistakes,
- and also add mandatory spectral keywords if missing.
-
- Reference:
- [1] The OGIP Spectral File Format, Sec. 3.1.1
- https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/summary/ogip_92_007_summary.html
- """
- default_keywords = {
- ## Mandatory keywords
- #"EXTNAME" : "SPECTRUM",
- "TELESCOP" : "NONE",
- "INSTRUME" : "NONE",
- "FILTER" : "NONE",
- #"EXPOSURE" : <integration_time (s)>,
- "BACKFILE" : "NONE",
- "CORRFILE" : "NONE",
- "CORRSCAL" : 1.0,
- "RESPFILE" : "NONE",
- "ANCRFILE" : "NONE",
- "HDUCLASS" : "OGIP",
- "HDUCLAS1" : "SPECTRUM",
- "HDUVERS" : "1.2.1",
- "POISSERR" : True,
- #"CHANTYPE" : "PI",
- #"DETCHANS" : <total_number_of_detector_channels>,
- ## Optional keywords for further information
- "BACKSCAL" : 1.0,
- "AREASCAL" : 1.0,
- # Type of spectral data:
- # (1) "TOTAL": gross spectrum (source+bkg);
- # (2) "NET": background-subtracted spectrum
- # (3) "BKG" background spectrum
- #"HDUCLAS2" : "NET",
- # Details of the type of data:
- # (1) "COUNT": data stored as counts
- # (2) "RATE": data stored as counts/s
- "HDUCLAS3" : { "COUNTS":"COUNT",
- "RATE":"RATE" }.get(self.spec_type),
- }
- # add mandatory keywords if missing
- for kw, value in default_keywords.items():
- if kw not in self.header:
- self.header[kw] = value
- # reset the specified keywords
- for kw in reset_kw:
- self.header[kw] = default_keywords.get(kw)
-
- def write(self, filename=None, clobber=False):
- """
- Create a new "SPECTRUM" table/extension and replace the original
- one, then write to output file.
- """
- if filename is None:
- filename = self.outfile
- columns = [
- fits.Column(name="CHANNEL", format="I", array=self.channel),
- fits.Column(name=self.spec_type, format=self.spec_fits_format,
- unit=self.spec_unit, array=self.spec_data),
- ]
- if self.grouping is not None:
- columns.append(fits.Column(name="GROUPING",
- format="I", array=self.grouping))
- if self.quality is not None:
- columns.append(fits.Column(name="QUALITY",
- format="I", array=self.quality))
- if self.stat_err is not None:
- columns.append(fits.Column(name="STAT_ERR", unit=self.spec_unit,
- format=self.spec_fits_format,
- array=self.stat_err))
- ext_spec_cols = fits.ColDefs(columns)
- ext_spec = fits.BinTableHDU.from_columns(ext_spec_cols,
- header=self.header)
- self.fitsobj["SPECTRUM"] = ext_spec
- self.fitsobj.writeto(filename, clobber=clobber, checksum=True)
-# class Spectrum }}}
-
-
-class SpectrumSet(Spectrum): # {{{
- """
- This class handles a set of spectrum, including the source spectrum,
- RMF, ARF, and the background spectrum.
-
- **NOTE**:
- The "COUNTS" column data are converted from "int32" to "float32",
- since this spectrum will be subtracted/compensated according to the
- ratios of ARFs.
- """
- # ARF object for this spectrum
- arf = None
- # RMF object for this spectrum
- rmf = None
- # background Spectrum object for this spectrum
- bkg = None
- # inner and outer radius of the region from which the spectrum extracted
- radius_inner = None
- radius_outer = None
- # total angular range of the spectral region
- angle = None
-
- # numpy dtype and FITS format code to which the spectrum data be
- # converted if the data is "COUNTS"
- #_spec_dtype = np.float32
- #_spec_fits_format = "E"
- _spec_dtype = np.float64
- _spec_fits_format = "D"
-
- def __init__(self, filename, outfile=None, arf=None, rmf=None, bkg=None):
- super().__init__(filename, outfile)
- # convert spectrum data type if necessary
- if self.spec_data.dtype != self._spec_dtype:
- self.spec_data = self.spec_data.astype(self._spec_dtype)
- self.spec_dtype = self._spec_dtype
- self.spec_fits_format = self._spec_fits_format
- if arf is not None:
- if isinstance(arf, ARF):
- self.arf = arf
- else:
- self.arf = ARF(arf)
- if rmf is not None:
- if isinstance(rmf, RMF):
- self.rmf = rmf
- else:
- self.rmf = RMF(rmf)
- if bkg is not None:
- if isinstance(bkg, Spectrum):
- self.bkg = bkg
- else:
- self.bkg = Spectrum(bkg)
- # convert background spectrum data type if necessary
- if self.bkg.spec_data.dtype != self._spec_dtype:
- self.bkg.spec_data = self.bkg.spec_data.astype(self._spec_dtype)
- self.bkg.spec_dtype = self._spec_dtype
- self.bkg.spec_fits_format = self._spec_fits_format
-
- def get_energy(self, mean="geometric"):
- """
- Get the energy values of each channel if RMF present.
-
- NOTE:
- The "E_MIN" and "E_MAX" columns of the RMF is required to calculate
- the spectrum channel energies.
- And the channel energies are generally different to the "ENERG_LO"
- and "ENERG_HI" of the corresponding ARF.
- """
- if self.rmf is None:
- return None
- else:
- return self.rmf.get_energy(mean=mean)
-
- def get_arf(self, mean="geometric", groupped=True, copy=True):
- """
- Get the interpolated ARF data w.r.t the spectral channel energies
- if the ARF presents.
-
- Arguments:
- * groupped: (bool) whether to get the groupped ARF
-
- Return: (groupped) interpolated ARF data
- """
- if self.arf is None:
- return None
- else:
- return self.arf.get_data(groupped=groupped, copy=copy)
-
- def read_xflt(self):
- """
- Read the XFLT000# keywords from the header, check the validity (e.g.,
- "XFLT0001" should equals "XFLT0002", "XFLT0003" should equals 0).
- Sum all the additional XFLT000# pairs (e.g., ) which describes the
- regions angluar ranges.
- """
- eps = 1.0e-6
- xflt0001 = float(self.header["XFLT0001"])
- xflt0002 = float(self.header["XFLT0002"])
- xflt0003 = float(self.header["XFLT0003"])
- # XFLT000# validity check
- assert np.isclose(xflt0001, xflt0002)
- assert abs(xflt0003) < eps
- # outer radius of the region
- self.radius_outer = xflt0001
- # angular regions
- self.angle = 0.0
- num = 4
- while True:
- try:
- angle_begin = float(self.header["XFLT%04d" % num])
- angle_end = float(self.header["XFLT%04d" % (num+1)])
- num += 2
- except KeyError:
- break
- self.angle += (angle_end - angle_begin)
- # if NO additional XFLT000# keys exist, assume "annulus" region
- if self.angle < eps:
- self.angle = 360.0
-
- def scale(self):
- """
- Scale the spectral data (and spectral group errors if present) of
- the source spectrum (and background spectra if present) according
- to the region angular size to make it correspond to the whole annulus
- region (i.e., 360 degrees).
-
- NOTE: the spectral data and errors (i.e., `self.spec_data', and
- `self.spec_err') is MODIFIED!
- """
- self.spec_data *= (360.0 / self.angle)
- if self.spec_err is not None:
- self.spec_err *= (360.0 / self.angle)
- # also scale the background spectrum if present
- if self.bkg:
- self.bkg.spec_data *= (360.0 / self.angle)
- if self.bkg.spec_err is not None:
- self.bkg.spec_err *= (360.0 / self.angle)
-
- def apply_grouping(self, grouping=None, quality=None, verbose=False):
- """
- Apply the spectral channel grouping specification to the source
- spectrum, the ARF (which is used during the later spectral
- manipulations), and the background spectrum (if presents).
-
- NOTE:
- * The spectral data (i.e., self.spec_data) is MODIFIED!
- * The spectral data within the same group are summed up.
- * The self grouping is overwritten if `grouping' is supplied, as well
- as the self quality.
- """
- super().apply_grouping(grouping=grouping, quality=quality)
- # also group the ARF accordingly
- self.arf.apply_grouping(energy_channel=self.get_energy(),
- grouping=self.grouping, verbose=verbose)
- # group the background spectrum if present
- if self.bkg:
- self.bkg.spec_data = group_data(self.bkg.spec_data, self.grouping)
-
- def estimate_errors(self, gehrels=True):
- """
- Estimate the statistical errors of each spectral group (after
- applying grouping) for the source spectrum (and background spectrum).
-
- If `gehrels=True', the statistical error for a spectral group with
- N photons is given by `1 + sqrt(N + 0.75)'; otherwise, the error
- is given by `sqrt(N)'.
-
- Results: `self.spec_err' (and `self.bkg.spec_err')
- """
- super().estimate_errors(gehrels=gehrels)
- eps = 1.0e-10
- # estimate the errors for background spectrum if present
- if self.bkg:
- if gehrels:
- self.bkg.spec_err = 1.0 + np.sqrt(self.bkg.spec_data + 0.75)
- else:
- self.bkg.spec_err = np.sqrt(self.bkg.spec_data)
- self.bkg.spec_err[self.bkg.spec_err <= 0.0] = eps
-
- def subtract_bkg(self, inplace=True, add_history=False, verbose=False):
- """
- Subtract the background contribution from the source spectrum.
- The `EXPOSURE' and `BACKSCAL' values are required to calculate
- the fraction/ratio for the background subtraction.
-
- Arguments:
- * inplace: whether replace the `spec_data' with the background-
- subtracted spectrum data; If True, the attribute
- `spec_bkg_subtracted' is also set to `True' when
- the subtraction finished.
- The keywords "BACKSCAL" and "AREASCAL" are set to 1.0.
-
- Return:
- background-subtracted spectrum data
- """
- ratio = (self.EXPOSURE / self.bkg.EXPOSURE) * \
- (self.BACKSCAL / self.bkg.BACKSCAL) * \
- (self.AREASCAL / self.bkg.AREASCAL)
- operation = " SUBTRACT_BACKGROUND: %s - %s * %s" % \
- (self.filename, ratio, self.bkg.filename)
- if verbose:
- print(operation, file=sys.stderr)
- spec_data_subbkg = self.spec_data - ratio * self.bkg.get_data()
- if inplace:
- self.spec_data = spec_data_subbkg
- self.spec_bkg_subtracted = True
- self.BACKSCAL = 1.0
- self.AREASCAL = 1.0
- # update header
- self.header["BACKSCAL"] = 1.0
- self.header["AREASCAL"] = 1.0
- self.header["BACKFILE"] = "NONE"
- self.header["HDUCLAS2"] = "NET" # background-subtracted spectrum
- # also record history
- if add_history:
- self.header.add_history(operation)
- return spec_data_subbkg
-
- def subtract(self, spectrumset, cross_arf, groupped=False,
- group_squeeze=False, add_history=False, verbose=False):
- """
- Subtract the photons that originate from the surrounding regions
- but were scattered into this spectrum due to the finite PSF.
-
- The background of this spectrum and the given spectrum should
- both be subtracted before applying this subtraction for crosstalk
- correction, as well as the below `compensate()' procedure.
-
- NOTE:
- 1. The crosstalk ARF must be provided, since the `spectrumset.arf'
- is required to be its ARF without taking crosstalk into account:
- spec1_new = spec1 - spec2 * (cross_arf_2_to_1 / arf2)
- 2. The ARF are interpolated to match the energies of spetral channels.
- """
- operation = " SUBTRACT: %s - (%s/%s) * %s" % (self.filename,
- cross_arf.filename, spectrumset.arf.filename,
- spectrumset.filename)
- if verbose:
- print(operation, file=sys.stderr)
- energy = self.get_energy()
- if groupped:
- spectrumset.arf.apply_grouping(energy_channel=energy,
- grouping=self.grouping, verbose=verbose)
- cross_arf.apply_grouping(energy_channel=energy,
- grouping=self.grouping, verbose=verbose)
- arfresp_spec = spectrumset.arf.get_data(groupped=True,
- group_squeeze=group_squeeze)
- arfresp_cross = cross_arf.get_data(groupped=True,
- group_squeeze=group_squeeze)
- else:
- arfresp_spec = spectrumset.arf.interpolate(x=energy,
- verbose=verbose)
- arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose)
- with np.errstate(divide="ignore", invalid="ignore"):
- arf_ratio = arfresp_cross / arfresp_spec
- # fix nan/inf values due to division by zero
- arf_ratio[ ~ np.isfinite(arf_ratio) ] = 0.0
- spec_data = self.get_data(group_squeeze=group_squeeze) - \
- spectrumset.get_data(group_squeeze=group_squeeze)*arf_ratio
- self.set_data(spec_data, group_squeeze=group_squeeze)
- # record history
- if add_history:
- self.header.add_history(operation)
-
- def compensate(self, cross_arf, groupped=False, group_squeeze=False,
- add_history=False, verbose=False):
- """
- Compensate the photons that originate from this regions but were
- scattered into the surrounding regions due to the finite PSF.
-
- formula:
- spec1_new = spec1 + spec1 * (cross_arf_1_to_2 / arf1)
- """
- operation = " COMPENSATE: %s + (%s/%s) * %s" % (self.filename,
- cross_arf.filename, self.arf.filename, self.filename)
- if verbose:
- print(operation, file=sys.stderr)
- energy = self.get_energy()
- if groupped:
- cross_arf.apply_grouping(energy_channel=energy,
- grouping=self.grouping, verbose=verbose)
- arfresp_this = self.arf.get_data(groupped=True,
- group_squeeze=group_squeeze)
- arfresp_cross = cross_arf.get_data(groupped=True,
- group_squeeze=group_squeeze)
- else:
- arfresp_this = self.arf.interpolate(x=energy, verbose=verbose)
- arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose)
- with np.errstate(divide="ignore", invalid="ignore"):
- arf_ratio = arfresp_cross / arfresp_this
- # fix nan/inf values due to division by zero
- arf_ratio[ ~ np.isfinite(arf_ratio) ] = 0.0
- spec_data = self.get_data(group_squeeze=group_squeeze) + \
- self.get_data(group_squeeze=group_squeeze) * arf_ratio
- self.set_data(spec_data, group_squeeze=group_squeeze)
- # record history
- if add_history:
- self.header.add_history(operation)
-
- def fix_negative(self, add_history=False, verbose=False):
- """
- The subtractions may lead to negative counts, it may be necessary
- to fix these channels with negative values.
- """
- neg_counts = self.spec_data < 0
- N = len(neg_counts)
- neg_channels = np.arange(N, dtype=np.int)[neg_counts]
- if len(neg_channels) > 0:
- print("WARNING: %d channels have NEGATIVE counts" % \
- len(neg_channels), file=sys.stderr)
- i = 0
- while len(neg_channels) > 0:
- i += 1
- if verbose:
- if i == 1:
- print("*** Fixing negative channels: iter %d..." % i,
- end="", file=sys.stderr)
- else:
- print("%d..." % i, end="", file=sys.stderr)
- for ch in neg_channels:
- neg_val = self.spec_data[ch]
- if ch < N-2:
- self.spec_data[ch] = 0
- self.spec_data[(ch+1):(ch+3)] -= 0.5 * np.abs(neg_val)
- else:
- # just set to zero if it is the last 2 channels
- self.spec_data[ch] = 0
- # update negative channels indices
- neg_counts = self.spec_data < 0
- neg_channels = np.arange(N, dtype=np.int)[neg_counts]
- if i > 0:
- print("FIXED!", file=sys.stderr)
- # record history
- if add_history:
- self.header.add_history(" FIXED NEGATIVE CHANNELS")
-
- def set_radius_inner(self, radius_inner):
- """
- Set the inner radius of the spectral region.
- """
- assert radius_inner < self.radius_outer
- self.radius_inner = radius_inner
-
- def copy(self):
- """
- Return a copy of this object.
- """
- new = super().copy()
- if self.bkg:
- new.bkg = self.bkg.copy()
- return new
-
- def randomize(self):
- """
- Randomize the source (and background if present) spectral data
- according to the estimated spectral group errors by assuming the
- normal distribution.
-
- NOTE: this method should be called AFTER the `copy()' method.
- """
- super().randomize()
- if self.bkg:
- self.bkg.spec_data = np.random.normal(self.bkg.spec_data,
- self.bkg.spec_err)
- self.bkg.spec_data[self.grouping == -1] = 0.0
- return self
-# class SpectrumSet }}}
-
-
-class Crosstalk: # {{{
- """
- XMM-Newton PSF Crosstalk effect correction.
- """
- # `SpectrumSet' object for the spectrum to be corrected
- spectrumset = None
- # NOTE/XXX: do NOT use list (e.g., []) here, otherwise, all the
- # instances will share these list properties.
- # `SpectrumSet' and `ARF' objects corresponding to the spectra from
- # which the photons were scattered into this spectrum.
- cross_in_specset = None
- cross_in_arf = None
- # `ARF' objects corresponding to the regions to which the photons of
- # this spectrum were scattered into.
- cross_out_arf = None
- # grouping specification and quality data
- grouping = None
- quality = None
- # whether the spectrum is groupped
- groupped = False
-
- def __init__(self, config, arf_dict={}, rmf_dict={},
- grouping=None, quality=None):
- """
- Arguments:
- * config: a section of the whole config file (`ConfigObj' object)
- """
- self.cross_in_specset = []
- self.cross_in_arf = []
- self.cross_out_arf = []
- # this spectrum to be corrected
- self.spectrumset = SpectrumSet(filename=config["spec"],
- outfile=config["outfile"],
- arf=arf_dict.get(config["arf"], config["arf"]),
- rmf=rmf_dict.get(config.get("rmf"), config.get("rmf")),
- bkg=config.get("bkg"))
- # spectra and cross arf from which photons were scattered in
- for reg_in in config["cross_in"].values():
- specset = SpectrumSet(filename=reg_in["spec"],
- arf=arf_dict.get(reg_in["arf"], reg_in["arf"]),
- rmf=rmf_dict.get(reg_in.get("rmf"), reg_in.get("rmf")),
- bkg=reg_in.get("bkg"))
- self.cross_in_specset.append(specset)
- self.cross_in_arf.append(arf_dict.get(reg_in["cross_arf"],
- ARF(reg_in["cross_arf"])))
- # regions into which the photons of this spectrum were scattered into
- if "cross_out" in config.sections:
- cross_arf = config["cross_out"].as_list("cross_arf")
- for arffile in cross_arf:
- self.cross_out_arf.append(arf_dict.get(arffile, ARF(arffile)))
- # grouping and quality
- self.grouping = grouping
- self.quality = quality
-
- def apply_grouping(self, verbose=False):
- self.spectrumset.apply_grouping(grouping=self.grouping,
- quality=self.quality, verbose=verbose)
- # also group the related surrounding spectra
- for specset in self.cross_in_specset:
- specset.apply_grouping(grouping=self.grouping,
- quality=self.quality, verbose=verbose)
- self.groupped = True
-
- def estimate_errors(self, gehrels=True, verbose=False):
- if verbose:
- print("INFO: Estimating spectral errors ...")
- self.spectrumset.estimate_errors(gehrels=gehrels)
- # also estimate errors for the related surrounding spectra
- for specset in self.cross_in_specset:
- specset.estimate_errors(gehrels=gehrels)
-
- def do_correction(self, subtract_bkg=True, fix_negative=False,
- group_squeeze=True, add_history=False, verbose=False):
- """
- Perform the crosstalk correction. The background contribution
- for each spectrum is subtracted first if `subtract_bkg' is True.
- The basic correction procedures are recorded to the header.
- """
- if add_history:
- self.spectrumset.header.add_history("Crosstalk Correction BEGIN")
- self.spectrumset.header.add_history(" TOOL: %s (v%s) @ %s" % (\
- os.path.basename(sys.argv[0]), __version__,
- datetime.utcnow().isoformat()))
- # background subtraction
- if subtract_bkg:
- if verbose:
- print("INFO: subtract background ...", file=sys.stderr)
- self.spectrumset.subtract_bkg(inplace=True,
- add_history=add_history, verbose=verbose)
- # also apply background subtraction to the surrounding spectra
- for specset in self.cross_in_specset:
- specset.subtract_bkg(inplace=True,
- add_history=add_history, verbose=verbose)
- # subtractions
- if verbose:
- print("INFO: apply subtractions ...", file=sys.stderr)
- for specset, cross_arf in zip(self.cross_in_specset,
- self.cross_in_arf):
- self.spectrumset.subtract(spectrumset=specset,
- cross_arf=cross_arf, groupped=self.groupped,
- group_squeeze=group_squeeze, add_history=add_history,
- verbose=verbose)
- # compensations
- if verbose:
- print("INFO: apply compensations ...", file=sys.stderr)
- for cross_arf in self.cross_out_arf:
- self.spectrumset.compensate(cross_arf=cross_arf,
- groupped=self.groupped, group_squeeze=group_squeeze,
- add_history=add_history, verbose=verbose)
- # fix negative values in channels
- if fix_negative:
- if verbose:
- print("INFO: fix negative channel values ...", file=sys.stderr)
- self.spectrumset.fix_negative(add_history=add_history,
- verbose=verbose)
- if add_history:
- self.spectrumset.header.add_history("END Crosstalk Correction")
-
- def fix_header(self):
- # fix header keywords
- self.spectrumset.fix_header_keywords(
- reset_kw=["RESPFILE", "ANCRFILE", "BACKFILE"])
-
- def copy(self):
- new = copy(self)
- # properly handle the copy of spectrumsets
- new.spectrumset = self.spectrumset.copy()
- new.cross_in_specset = [ specset.copy() \
- for specset in self.cross_in_specset ]
- return new
-
- def randomize(self):
- self.spectrumset.randomize()
- for specset in self.cross_in_specset:
- specset.randomize()
- return self
-
- def get_spectrum(self, copy=True):
- if copy:
- return self.spectrumset.copy()
- else:
- return self.spectrumset
-
- def write(self, filename=None, clobber=False):
- self.spectrumset.write(filename=filename, clobber=clobber)
-# class Crosstalk }}}
-
-
-class Deprojection: # {{{
- """
- Perform the deprojection on a set of PROJECTED spectra with the
- assumption of spherical symmetry of the source object, and produce
- the DEPROJECTED spectra.
-
- NOTE:
- * Assumption of the spherical symmetry
- * Background should be subtracted before deprojection
- * ARF differences of different regions are taken into account
-
- Reference & Credit:
- [1] Direct X-ray Spectra Deprojection
- https://www-xray.ast.cam.ac.uk/papers/dsdeproj/
- Sanders & Fabian 2007, MNRAS, 381, 1381
- """
- spectra = None
- grouping = None
- quality = None
-
- def __init__(self, spectra, grouping=None, quality=None, verbose=False):
- """
- Arguments:
- * spectra: a set of spectra from the inner-most to the outer-most
- regions (e.g., spectra after correcting crosstalk effect)
- * grouping: grouping specification for all the spectra
- * quality: quality column for the spectra
- """
- self.spectra = []
- for spec in spectra:
- if not isinstance(spec, SpectrumSet):
- raise ValueError("Not a 'SpectrumSet' object")
- spec.read_xflt()
- self.spectra.append(spec)
- self.spectra = spectra
- self.grouping = grouping
- self.quality = quality
- # sort spectra by `radius_outer'
- self.spectra.sort(key=lambda x: x.radius_outer)
- # set the inner radii
- radii_inner = [0.0] + [ x.radius_outer for x in self.spectra[:-1] ]
- for spec, rin in zip(self.spectra, radii_inner):
- spec.set_radius_inner(rin)
- if verbose:
- print("Deprojection: loaded spectrum: radius: (%s, %s)" % \
- (spec.radius_inner, spec.radius_outer),
- file=sys.stderr)
- # check EXPOSURE validity (all spectra must have the same exposures)
- exposures = [ spec.EXPOSURE for spec in self.spectra ]
- assert np.allclose(exposures[:-1], exposures[1:])
-
- def subtract_bkg(self, verbose=True):
- for spec in self.spectra:
- if not spec.bkg:
- raise ValueError("Spectrum '%s' has NO background" % \
- spec.filename)
- spec.subtract_bkg(inplace=True, verbose=verbose)
-
- def apply_grouping(self, verbose=False):
- for spec in self.spectra:
- spec.apply_grouping(grouping=self.grouping, quality=self.quality,
- verbose=verbose)
-
- def estimate_errors(self, gehrels=True):
- for spec in self.spectra:
- spec.estimate_errors(gehrels=gehrels)
-
- def scale(self):
- """
- Scale the spectral data according to the region angular size.
- """
- for spec in self.spectra:
- spec.scale()
-
- def do_deprojection(self, group_squeeze=True,
- add_history=False, verbose=False):
- #
- # TODO/XXX: How to apply ARF correction here???
- #
- num_spec = len(self.spectra)
- tmp_spec_data = self.spectra[0].get_data(group_squeeze=group_squeeze)
- spec_shape = tmp_spec_data.shape
- spec_dtype = tmp_spec_data.dtype
- spec_per_vol = [None] * num_spec
- #
- for shellnum in reversed(range(num_spec)):
- if verbose:
- print("DEPROJECTION: deprojecting shell %d ..." % shellnum,
- file=sys.stderr)
- spec = self.spectra[shellnum]
- # calculate projected spectrum of outlying shells
- proj_spec = np.zeros(spec_shape, spec_dtype)
- for outer in range(shellnum+1, num_spec):
- vol = self.projected_volume(
- r1=self.spectra[outer].radius_inner,
- r2=self.spectra[outer].radius_outer,
- R1=spec.radius_inner,
- R2=spec.radius_outer)
- proj_spec += spec_per_vol[outer] * vol
- #
- this_spec = spec.get_data(group_squeeze=group_squeeze, copy=True)
- deproj_spec = this_spec - proj_spec
- # calculate the volume that this spectrum is from
- this_vol = self.projected_volume(
- r1=spec.radius_inner, r2=spec.radius_outer,
- R1=spec.radius_inner, R2=spec.radius_outer)
- # calculate the spectral data per unit volume
- spec_per_vol[shellnum] = deproj_spec / this_vol
- # set the spectral data to these deprojected values
- self.set_spec_data(spec_per_vol, group_squeeze=group_squeeze)
- # add history to header
- if add_history:
- self.add_history()
-
- def get_spec_data(self, group_squeeze=True, copy=True):
- """
- Extract the spectral data of each spectrum after deprojection
- performed.
- """
- return [ spec.get_data(group_squeeze=group_squeeze, copy=copy)
- for spec in self.spectra ]
-
- def set_spec_data(self, spec_data, group_squeeze=True):
- """
- Set `spec_data' for each spectrum to the deprojected spectral data.
- """
- assert len(spec_data) == len(self.spectra)
- for spec, data in zip(self.spectra, spec_data):
- spec.set_data(data, group_squeeze=group_squeeze)
-
- def add_stat_err(self, stat_err, group_squeeze=True):
- """
- Add the "STAT_ERR" column to each spectrum.
- """
- assert len(stat_err) == len(self.spectra)
- for spec, err in zip(self.spectra, stat_err):
- spec.add_stat_err(err, group_squeeze=group_squeeze)
-
- def add_history(self):
- """
- Append a brief history about this tool to the header.
- """
- history = "Deprojected by %s (v%s) @ %s" % (
- os.path.basename(sys.argv[0]), __version__,
- datetime.utcnow().isoformat())
- for spec in self.spectra:
- spec.header.add_history(history)
-
- def fix_header(self):
- # fix header keywords
- for spec in self.spectra:
- spec.fix_header_keywords(
- reset_kw=["RESPFILE", "ANCRFILE", "BACKFILE"])
-
- def write(self, filenames=[], clobber=False):
- """
- Write the deprojected spectra to output file.
- """
- if filenames == []:
- filenames = [ spec.outfile for spec in self.spectra ]
- for spec, outfile in zip(self.spectra, filenames):
- spec.write(filename=outfile, clobber=clobber)
-
- @staticmethod
- def projected_volume(r1, r2, R1, R2):
- """
- Calculate the projected volume of a spherical shell of radii r1 -> r2
- onto an annulus on the sky of radius R1 -> R2.
-
- This volume is the integral:
- Int(R=R1,R2) Int(x=sqrt(r1^2-R^2),sqrt(r2^2-R^2)) 2*pi*R dx dR
- =
- Int(R=R1,R2) 2*pi*R * (sqrt(r2^2-R^2) - sqrt(r1^2-R^2)) dR
-
- Note that the above integral is only half the total volume
- (i.e., front only).
- """
- def sqrt_trunc(x):
- if x > 0:
- return np.sqrt(x)
- else:
- return 0.0
- #
- p1 = sqrt_trunc(r1**2 - R2**2)
- p2 = sqrt_trunc(r1**2 - R1**2)
- p3 = sqrt_trunc(r2**2 - R2**2)
- p4 = sqrt_trunc(r2**2 - R1**2)
- return 2.0 * (2.0/3.0) * np.pi * ((p1**3 - p2**3) + (p4**3 - p3**3))
-# class Deprojection }}}
-
-
-# Helper functions {{{
-def calc_median_errors(results):
- """
- Calculate the median and errors for the spectral data gathered
- through Monte Carlo simulations.
-
- NOTE:
- Errors calculation just use the quantiles,
- i.e., 1sigma ~= 68.3% = Q(84.15%) - Q(15.85%)
- """
- results = np.array(results)
- # `results' now has shape: (mc_times, num_spec, num_channel)
- # sort by the Monte Carlo simulation axis
- results.sort(0)
- mc_times = results.shape[0]
- medians = results[ int(mc_times * 0.5) ]
- lowerpcs = results[ int(mc_times * 0.1585) ]
- upperpcs = results[ int(mc_times * 0.8415) ]
- errors = np.sqrt(0.5 * ((medians-lowerpcs)**2 + (upperpcs-medians)**2))
- return (medians, errors)
-
-
-def set_argument(name, default, cmdargs, config):
- value = default
- if name in config.keys():
- value = config.as_bool(name)
- value_cmd = vars(cmdargs)[name]
- if value_cmd != default:
- value = value_cmd # command arguments overwrite others
- return value
-# helper functions }}}
-
-
-# main routine {{{
-def main(config, subtract_bkg, fix_negative, mc_times,
- verbose=False, clobber=False):
- # collect ARFs and RMFs into dictionaries (avoid interpolation every time)
- arf_files = set()
- rmf_files = set()
- for region in config.sections:
- config_reg = config[region]
- arf_files.add(config_reg.get("arf"))
- rmf_files.add(config_reg.get("rmf"))
- for reg_in in config_reg["cross_in"].values():
- arf_files.add(reg_in.get("arf"))
- arf_files.add(reg_in.get("cross_arf"))
- if "cross_out" in config_reg.sections:
- for arf in config_reg["cross_out"].as_list("cross_arf"):
- arf_files.add(arf)
- arf_files = arf_files - set([None])
- arf_dict = { arf: ARF(arf) for arf in arf_files }
- rmf_files = rmf_files - set([None])
- rmf_dict = { rmf: RMF(rmf) for rmf in rmf_files }
- if verbose:
- print("INFO: arf_files:", arf_files, file=sys.stderr)
- print("INFO: rmf_files:", rmf_files, file=sys.stderr)
-
- # get the GROUPING and QUALITY data
- grouping_fits = fits.open(config["grouping"])
- grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array
- quality = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array
- # squeeze the groupped spectral data, etc.
- group_squeeze = True
-
- # crosstalk objects (BEFORE background subtraction)
- crosstalks_cleancopy = []
- # crosstalk-corrected spectra
- cc_spectra = []
-
- # correct crosstalk effects for each region first
- for region in config.sections:
- if verbose:
- print("INFO: processing '%s' ..." % region, file=sys.stderr)
- crosstalk = Crosstalk(config.get(region),
- arf_dict=arf_dict, rmf_dict=rmf_dict,
- grouping=grouping, quality=quality)
- crosstalk.apply_grouping(verbose=verbose)
- crosstalk.estimate_errors(verbose=verbose)
- # keep a (almost) clean copy of the crosstalk object
- crosstalks_cleancopy.append(crosstalk.copy())
- if verbose:
- print("INFO: doing crosstalk correction ...", file=sys.stderr)
- crosstalk.do_correction(subtract_bkg=subtract_bkg,
- fix_negative=fix_negative, group_squeeze=group_squeeze,
- add_history=True, verbose=verbose)
- cc_spectra.append(crosstalk.get_spectrum(copy=True))
-
- # load back the crosstalk-corrected spectra for deprojection
- if verbose:
- print("INFO: preparing spectra for deprojection ...", file=sys.stderr)
- deprojection = Deprojection(spectra=cc_spectra, grouping=grouping,
- quality=quality, verbose=verbose)
- if verbose:
- print("INFO: scaling spectra according the region angular size...",
- file=sys.stderr)
- deprojection.scale()
- if verbose:
- print("INFO: doing deprojection ...", file=sys.stderr)
- deprojection.do_deprojection(add_history=True, verbose=verbose)
- deproj_results = [ deprojection.get_spec_data(
- group_squeeze=group_squeeze, copy=True) ]
-
- # Monte Carlo for spectral group error estimation
- print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \
- mc_times, file=sys.stderr)
- for i in range(mc_times):
- if i % 100 == 0:
- print("%d..." % i, end="", flush=True, file=sys.stderr)
- # correct crosstalk effects
- cc_spectra_copy = []
- for crosstalk in crosstalks_cleancopy:
- # copy and randomize
- crosstalk_copy = crosstalk.copy().randomize()
- crosstalk_copy.do_correction(subtract_bkg=subtract_bkg,
- fix_negative=fix_negative, group_squeeze=group_squeeze,
- add_history=False, verbose=False)
- cc_spectra_copy.append(crosstalk_copy.get_spectrum(copy=True))
- # deproject spectra
- deprojection_copy = Deprojection(spectra=cc_spectra_copy,
- grouping=grouping, quality=quality, verbose=False)
- deprojection_copy.scale()
- deprojection_copy.do_deprojection(add_history=False, verbose=False)
- deproj_results.append(deprojection_copy.get_spec_data(
- group_squeeze=group_squeeze, copy=True))
- print("DONE!", flush=True, file=sys.stderr)
-
- if verbose:
- print("INFO: Calculating the median and errors for each spectrum ...",
- file=sys.stderr)
- medians, errors = calc_median_errors(deproj_results)
- deprojection.set_spec_data(medians, group_squeeze=group_squeeze)
- deprojection.add_stat_err(errors, group_squeeze=group_squeeze)
- if verbose:
- print("INFO: Writing the crosstalk-corrected and deprojected " + \
- "spectra with estimated statistical errors ...", file=sys.stderr)
- deprojection.fix_header()
- deprojection.write(clobber=clobber)
-# main routine }}}
-
-
-# main_deprojection routine {{{
-def main_deprojection(config, mc_times, verbose=False, clobber=False):
- """
- Only perform the spectral deprojection.
- """
- # collect ARFs and RMFs into dictionaries (avoid interpolation every time)
- arf_files = set()
- rmf_files = set()
- for region in config.sections:
- config_reg = config[region]
- arf_files.add(config_reg.get("arf"))
- rmf_files.add(config_reg.get("rmf"))
- arf_files = arf_files - set([None])
- arf_dict = { arf: ARF(arf) for arf in arf_files }
- rmf_files = rmf_files - set([None])
- rmf_dict = { rmf: RMF(rmf) for rmf in rmf_files }
- if verbose:
- print("INFO: arf_files:", arf_files, file=sys.stderr)
- print("INFO: rmf_files:", rmf_files, file=sys.stderr)
-
- # get the GROUPING and QUALITY data
- grouping_fits = fits.open(config["grouping"])
- grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array
- quality = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array
- # squeeze the groupped spectral data, etc.
- group_squeeze = True
-
- # load spectra for deprojection
- if verbose:
- print("INFO: preparing spectra for deprojection ...", file=sys.stderr)
- proj_spectra = []
- for region in config.sections:
- config_reg = config[region]
- specset = SpectrumSet(filename=config_reg["spec"],
- outfile=config_reg["outfile"],
- arf=arf_dict.get(config_reg["arf"], config_reg["arf"]),
- rmf=rmf_dict.get(config_reg["rmf"], config_reg["rmf"]),
- bkg=config_reg["bkg"])
- proj_spectra.append(specset)
-
- deprojection = Deprojection(spectra=proj_spectra, grouping=grouping,
- quality=quality, verbose=verbose)
- deprojection.apply_grouping(verbose=verbose)
- deprojection.estimate_errors()
- if verbose:
- print("INFO: scaling spectra according the region angular size ...",
- file=sys.stderr)
- deprojection.scale()
-
- # keep a (almost) clean copy of the input projected spectra
- proj_spectra_cleancopy = [ spec.copy() for spec in proj_spectra ]
-
- if verbose:
- print("INFO: subtract the background ...", file=sys.stderr)
- deprojection.subtract_bkg(verbose=verbose)
- if verbose:
- print("INFO: doing deprojection ...", file=sys.stderr)
- deprojection.do_deprojection(add_history=True, verbose=verbose)
- deproj_results = [ deprojection.get_spec_data(
- group_squeeze=group_squeeze, copy=True) ]
-
- # Monte Carlo for spectral group error estimation
- print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \
- mc_times, file=sys.stderr)
- for i in range(mc_times):
- if i % 100 == 0:
- print("%d..." % i, end="", flush=True, file=sys.stderr)
- # copy and randomize the input projected spectra
- proj_spectra_copy = [ spec.copy().randomize()
- for spec in proj_spectra_cleancopy ]
- # deproject spectra
- deprojection_copy = Deprojection(spectra=proj_spectra_copy,
- grouping=grouping, quality=quality, verbose=False)
- deprojection_copy.subtract_bkg(verbose=False)
- deprojection_copy.do_deprojection(add_history=False, verbose=False)
- deproj_results.append(deprojection_copy.get_spec_data(
- group_squeeze=group_squeeze, copy=True))
- print("DONE!", flush=True, file=sys.stderr)
-
- if verbose:
- print("INFO: Calculating the median and errors for each spectrum ...",
- file=sys.stderr)
- medians, errors = calc_median_errors(deproj_results)
- deprojection.set_spec_data(medians, group_squeeze=group_squeeze)
- deprojection.add_stat_err(errors, group_squeeze=group_squeeze)
- if verbose:
- print("INFO: Writing the deprojected spectra " + \
- "with estimated statistical errors ...", file=sys.stderr)
- deprojection.fix_header()
- deprojection.write(clobber=clobber)
-# main_deprojection routine }}}
-
-
-# main_crosstalk routine {{{
-def main_crosstalk(config, subtract_bkg, fix_negative, mc_times,
- verbose=False, clobber=False):
- """
- Only perform the crosstalk correction.
- """
- # collect ARFs and RMFs into dictionaries (avoid interpolation every time)
- arf_files = set()
- rmf_files = set()
- for region in config.sections:
- config_reg = config[region]
- arf_files.add(config_reg.get("arf"))
- rmf_files.add(config_reg.get("rmf"))
- for reg_in in config_reg["cross_in"].values():
- arf_files.add(reg_in.get("arf"))
- arf_files.add(reg_in.get("cross_arf"))
- if "cross_out" in config_reg.sections:
- for arf in config_reg["cross_out"].as_list("cross_arf"):
- arf_files.add(arf)
- arf_files = arf_files - set([None])
- arf_dict = { arf: ARF(arf) for arf in arf_files }
- rmf_files = rmf_files - set([None])
- rmf_dict = { rmf: RMF(rmf) for rmf in rmf_files }
- if verbose:
- print("INFO: arf_files:", arf_files, file=sys.stderr)
- print("INFO: rmf_files:", rmf_files, file=sys.stderr)
-
- # get the GROUPING and QUALITY data
- if "grouping" in config.keys():
- grouping_fits = fits.open(config["grouping"])
- grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array
- quality = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array
- group_squeeze = True
- else:
- grouping = None
- quality = None
- group_squeeze = False
-
- # crosstalk objects (BEFORE background subtraction)
- crosstalks_cleancopy = []
- # crosstalk-corrected spectra
- cc_spectra = []
-
- # correct crosstalk effects for each region first
- for region in config.sections:
- if verbose:
- print("INFO: processing '%s' ..." % region, file=sys.stderr)
- crosstalk = Crosstalk(config.get(region),
- arf_dict=arf_dict, rmf_dict=rmf_dict,
- grouping=grouping, quality=quality)
- if grouping is not None:
- crosstalk.apply_grouping(verbose=verbose)
- crosstalk.estimate_errors(verbose=verbose)
- # keep a (almost) clean copy of the crosstalk object
- crosstalks_cleancopy.append(crosstalk.copy())
- if verbose:
- print("INFO: doing crosstalk correction ...", file=sys.stderr)
- crosstalk.do_correction(subtract_bkg=subtract_bkg,
- fix_negative=fix_negative, group_squeeze=group_squeeze,
- add_history=True, verbose=verbose)
- crosstalk.fix_header()
- cc_spectra.append(crosstalk.get_spectrum(copy=True))
-
- # spectral data of the crosstalk-corrected spectra
- cc_results = []
- cc_results.append([ spec.get_data(group_squeeze=group_squeeze, copy=True)
- for spec in cc_spectra ])
-
- # Monte Carlo for spectral group error estimation
- print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \
- mc_times, file=sys.stderr)
- for i in range(mc_times):
- if i % 100 == 0:
- print("%d..." % i, end="", flush=True, file=sys.stderr)
- # correct crosstalk effects
- cc_spectra_copy = []
- for crosstalk in crosstalks_cleancopy:
- # copy and randomize
- crosstalk_copy = crosstalk.copy().randomize()
- crosstalk_copy.do_correction(subtract_bkg=subtract_bkg,
- fix_negative=fix_negative, group_squeeze=group_squeeze,
- add_history=False, verbose=False)
- cc_spectra_copy.append(crosstalk_copy.get_spectrum(copy=True))
- cc_results.append([ spec.get_data(group_squeeze=group_squeeze,
- copy=True)
- for spec in cc_spectra_copy ])
- print("DONE!", flush=True, file=sys.stderr)
-
- if verbose:
- print("INFO: Calculating the median and errors for each spectrum ...",
- file=sys.stderr)
- medians, errors = calc_median_errors(cc_results)
- if verbose:
- print("INFO: Writing the crosstalk-corrected spectra " + \
- "with estimated statistical errors ...",
- file=sys.stderr)
- for spec, data, err in zip(cc_spectra, medians, errors):
- spec.set_data(data, group_squeeze=group_squeeze)
- spec.add_stat_err(err, group_squeeze=group_squeeze)
- spec.write(clobber=clobber)
-# main_crosstalk routine }}}
-
-
-if __name__ == "__main__":
- # arguments' default values
- default_mode = "both"
- default_mc_times = 5000
- # commandline arguments parser
- parser = argparse.ArgumentParser(
- description="Correct the crosstalk effects for XMM EPIC spectra",
- epilog="Version: %s (%s)" % (__version__, __date__))
- parser.add_argument("config", help="config file in which describes " +\
- "the crosstalk relations ('ConfigObj' syntax)")
- parser.add_argument("-m", "--mode", dest="mode", default=default_mode,
- help="operation mode (both | crosstalk | deprojection)")
- parser.add_argument("-B", "--no-subtract-bkg", dest="subtract_bkg",
- action="store_false", help="do NOT subtract background first")
- parser.add_argument("-N", "--fix-negative", dest="fix_negative",
- action="store_true", help="fix negative channel values")
- parser.add_argument("-M", "--mc-times", dest="mc_times",
- type=int, default=default_mc_times,
- help="Monte Carlo times for error estimation")
- parser.add_argument("-C", "--clobber", dest="clobber",
- action="store_true", help="overwrite output file if exists")
- parser.add_argument("-v", "--verbose", dest="verbose",
- action="store_true", help="show verbose information")
- args = parser.parse_args()
- # merge commandline arguments and config
- config = ConfigObj(args.config)
- subtract_bkg = set_argument("subtract_bkg", True, args, config)
- fix_negative = set_argument("fix_negative", False, args, config)
- verbose = set_argument("verbose", False, args, config)
- clobber = set_argument("clobber", False, args, config)
- # operation mode
- mode = config.get("mode", default_mode)
- if args.mode != default_mode:
- mode = args.mode
- # Monte Carlo times
- mc_times = config.as_int("mc_times")
- if args.mc_times != default_mc_times:
- mc_times = args.mc_times
-
- if mode.lower() == "both":
- print("MODE: CROSSTALK + DEPROJECTION", file=sys.stderr)
- main(config, subtract_bkg=subtract_bkg, fix_negative=fix_negative,
- mc_times=mc_times, verbose=verbose, clobber=clobber)
- elif mode.lower() == "deprojection":
- print("MODE: DEPROJECTION", file=sys.stderr)
- main_deprojection(config, mc_times=mc_times,
- verbose=verbose, clobber=clobber)
- elif mode.lower() == "crosstalk":
- print("MODE: CROSSTALK", file=sys.stderr)
- main_crosstalk(config, subtract_bkg=subtract_bkg,
- fix_negative=fix_negative, mc_times=mc_times,
- verbose=verbose, clobber=clobber)
- else:
- raise ValueError("Invalid operation mode: %s" % mode)
- print(WARNING)
-
-# vim: set ts=4 sw=4 tw=0 fenc=utf-8 ft=python: #
diff --git a/python/radec2deg.py b/python/radec2deg.py
deleted file mode 100755
index 9966095..0000000
--- a/python/radec2deg.py
+++ /dev/null
@@ -1,96 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# Aaron LI
-# Created: 2015-04-17
-# Updated: 2016-06-30
-#
-
-"""
-Convert the coordinates data in format (??h??m??s, ??d??m??s)
-to format (degree, degree).
-"""
-
-import os
-import sys
-import re
-import getopt
-import math
-
-
-USAGE = """Usage:
- %(prog)s [ -h ] -i coords_file
-
-Required arguments:
- -i, --infile
- infile containing the coordinates
-
-Optional arguments:
- -h, --help
-""" % {'prog': os.path.basename(sys.argv[0])}
-
-
-def usage():
- print(USAGE)
-
-
-def ra2deg(h, m, s):
- return h * 15.0 + m * 15.0/60.0 + s * 15.0/3600.0
-
-
-def dec2deg(d, m, s):
- if (d >= 0):
- sign = 1.0
- else:
- sign = -1.0
- return sign * (math.fabs(d) + m/60.0 + s/3600.0)
-
-
-def s_ra2deg(hms):
- h, m, s = map(float, re.sub('[hms]', ' ', hms).split())
- return h * 15.0 + m * 15.0/60.0 + s * 15.0/3600.0
-
-
-def s_dec2deg(dms):
- d, m, s = map(float, re.sub('[dms]', ' ', dms).split())
- if (d >= 0):
- sign = 1.0
- else:
- sign = -1.0
- return sign * (math.fabs(d) + m/60.0 + s/3600.0)
-
-
-def calc_offset(coord1, coord2):
- ra1, dec1 = coord1
- ra2, dec2 = coord2
- return math.sqrt((ra1-ra2)**2 + (dec1-dec2)**2)
-
-
-def main():
- try:
- opts, args = getopt.getopt(sys.argv[1:], "hi:",
- ["help", "infile="])
- except getopt.GetoptError as err:
- print(err)
- usage()
- sys.exit(2)
- for opt, arg in opts:
- if opt in ("-h", "--help"):
- usage()
- sys.exit(1)
- elif opt in ("-i", "--infile"):
- infile = arg
- else:
- assert False, "unhandled option"
-
- for line in open(infile):
- if re.match(r"^\s*#", line) or re.match(r"^\s*$", line):
- continue
- ra, dec = line.split()
- ra_deg = s_ra2deg(ra)
- dec_deg = s_dec2deg(dec)
- print("%.8f %.8f" % (ra_deg, dec_deg))
-
-
-if __name__ == "__main__":
- main()
diff --git a/python/radec_angle.py b/python/radec_angle.py
deleted file mode 100755
index ec01807..0000000
--- a/python/radec_angle.py
+++ /dev/null
@@ -1,248 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# Aaron LI
-# Created: 2015-04-17
-# Updated: 2016-06-30
-#
-
-"""
-Calculate the angles between the given center point to other points
-on the sphere.
-
-The following input formats are supported:
- longitude latitude => FMT
- ------------------------------------
- ??h??m??s ??d??m??s => "radec"
- ?? ?? ?? ?? ?? ?? => "ra3dec3"
- deg deg => "degdeg"
-"""
-
-import os
-import sys
-import re
-import getopt
-import math
-
-
-USAGE = """Usage:
- %(prog)s [ -b -h ] -r RA -d DEC -i infile -f FMT -u UNIT
-
-Required arguments:
- -r, --ra
- RA (??h??m??s) of the center
- -d, --dec
- DEC (??d??m??s) of the center
- -i, --infile
- input file containing the coordinates data
- -f, --format
- value: radec | ra3dec3 | degdeg
- coordinates format of the input data file
- -u, --unit
- value: deg | arcmin | arcsec
- unit of the output data
-
-Optional arguments:
- -b, --brief
- brief mode: only output results
- -h, --help
-""" % {'prog': os.path.basename(sys.argv[0])}
-
-
-def usage():
- print(USAGE, file=sys.stderr)
-
-
-def ra2deg(h, m, s):
- """
- Convert RA (hour, minute, second) to degree.
- """
- return h * 15.0 + m * 15.0/60.0 + s * 15.0/3600.0
-
-
-def dec2deg(d, m, s):
- """
- Convert DEC (deg, arcmin, arcsec) to degree.
- """
- if (d >= 0):
- sign = 1.0
- else:
- sign = -1.0
- return sign * (math.fabs(d) + m/60.0 + s/3600.0)
-
-
-def s_ra2deg(hms):
- """
- Convert RA string ("??h??m??s") to degree.
- """
- h, m, s = map(float, re.sub('[hms]', ' ', hms).split())
- return ra2deg(h, m, s)
-
-
-def s_dec2deg(dms):
- """
- Convert DEC string ("??d??m??s") to degree.
- """
- d, m, s = map(float, re.sub('[dms]', ' ', dms).split())
- return dec2deg(d, m, s)
-
-
-def deg2rad(deg):
- """
- Convert unit from deg to rad.
- """
- return deg * math.pi / 180.0
-
-
-def rad2deg(rad):
- """
- Convert unit from rad to deg.
- """
- return rad * 180.0 / math.pi
-
-
-def central_angle(p1, p2, unit="deg"):
- """
- Calculate the central angle between the two points on the sphere.
-
- Input parameters:
- p1, p2: (longitude, latitude), coorindates of the two points
-
- Algorithm:
- (radial, azimuthal, polar): (r, theta, phi)
- central_angle: alpha
- longitude: lambda = theta
- latitude: delta = 90 - phi
- colatitude: phi
-
- Unit vector:
- \hat{r}_1 = (cos(theta1) sin(phi1), sin(theta1) sin(phi1), cos(phi1))
- = (cos(lambda1) cos(delta1), sin(lambda1) cos(delta1), sin(delta1))
- \hat{r}_2 = (cos(theta2) sin(phi2), sin(theta2) sin(phi2), cos(phi2))
- = (cos(lambda2) cos(delta2), sin(lambda2) cos(delta2), sin(delta2))
-
- Therefore the angle (alpha) between \hat{r}_1 and \hat{r}_2:
- cos(alpha) = \hat{r}_1 \cdot \hat{r}_2
- = cos(delta1) cos(delta2) cos(lambda1-lambda2)
- + sin(delta1) sin(delta2)
-
- References:
- [1] Spherical Coordinates - Wolfram MathWorld
- http://mathworld.wolfram.com/SphericalCoordinates.html
- Equation (19)
- [2] Great Circle - Wolfram MathWorld
- http://mathworld.wolfram.com/GreatCircle.html
- Equation (1), (2), (4)
- """
- lbd1, delta1 = map(deg2rad, p1)
- lbd2, delta2 = map(deg2rad, p2)
- dotvalue = (math.cos(delta1) * math.cos(delta2) * math.cos(lbd1-lbd2) +
- math.sin(delta1) * math.sin(delta2))
- alpha = math.acos(dotvalue)
- if unit == "rad":
- return alpha
- elif unit == "arcmin":
- return rad2deg(alpha) * 60.0
- elif unit == "arcsec":
- return rad2deg(alpha) * 60.0*60.0
- else:
- # default: degree
- return rad2deg(alpha)
-
-
-def main():
- # Mandatory arguments
- center_ra = None
- center_dec = None
- infile = None
-
- # Default parameters
- unit = "arcmin"
- fmt = "radec" # default format: "??h??m??s ??d??m??s"
-
- # Process command line arguments
- try:
- opts, args = getopt.getopt(sys.argv[1:], "bd:f:hi:r:u:",
- ["brief", "dec=", "format=", "help",
- "infile=", "ra=", "unit="])
- except getopt.GetoptError as err:
- print(err)
- usage()
- sys.exit(2)
- brief = False # brief mode
- for opt, arg in opts:
- if opt in ("-h", "--help"):
- usage()
- sys.exit(1)
- elif opt in ("-b", "--brief"):
- brief = True
- elif opt in ("-d", "--dec"):
- center_dec = arg
- elif opt in ("-r", "--ra"):
- center_ra = arg
- elif opt in ("-i", "--infile"):
- infile = arg
- elif opt in ("-f", "--format"):
- fmt = arg
- elif opt in ("-u", "--unit"):
- unit = arg
- else:
- assert False, "unhandled option"
-
- # Check mandatory arguments
- if not center_ra:
- print("Error: --ra argument required!", file=sys.stderr)
- if not center_dec:
- print("Error: --dec argument required!", file=sys.stderr)
- if not infile:
- print("Error: --infile argument required!", file=sys.stderr)
-
- if fmt == "radec":
- center_ra_deg = s_ra2deg(center_ra)
- center_dec_deg = s_dec2deg(center_dec)
- elif fmt == "ra3dec3":
- ra_h, ra_m, ra_s = map(float, center_ra.split())
- dec_d, dec_m, dec_s = map(float, center_dec.split())
- center_ra_deg = ra2deg(ra_h, ra_m, ra_s)
- center_dec_deg = dec2deg(dec_d, dec_m, dec_s)
- elif fmt == "degdeg":
- center_ra_deg = float(center_ra)
- center_dec_deg = float(center_dec)
- else:
- print("Error: unknown format type: %s" % fmt, file=sys.stderr)
- sys.exit(2)
-
- if not brief:
- print("# Central_angle (unit: %s)" % unit)
-
- datafile = open(infile, "r")
- for line in datafile:
- if re.match(r"^\s*#", line):
- # skip comments
- continue
- elif re.match(r"^\s*$", line):
- # skip blank line
- continue
- # coordinate format
- if fmt == "radec":
- ra, dec = line.split()
- ra_deg = s_ra2deg(ra)
- dec_deg = s_dec2deg(dec)
- elif fmt == "ra3dec3":
- ra_h, ra_m, ra_s, dec_d, dec_m, dec_s = map(float, line.split())
- ra_deg = ra2deg(ra_h, ra_m, ra_s)
- dec_deg = dec2deg(dec_d, dec_m, dec_s)
- elif fmt == "degdeg":
- ra_deg, dec_deg = map(float, line.split())
- else:
- print("Error: unknown format type: %s" % fmt, file=sys.stderr)
- sys.exit(2)
- # calculate angle
- angle = central_angle((center_ra_deg, center_dec_deg),
- (ra_deg, dec_deg), unit=unit)
- print("%.10f" % angle)
- datafile.close()
-
-
-if __name__ == "__main__":
- main()
diff --git a/python/randomize_events.py b/python/randomize_events.py
deleted file mode 100755
index e1a6e31..0000000
--- a/python/randomize_events.py
+++ /dev/null
@@ -1,72 +0,0 @@
-#!/usr/bin/env python3
-#
-# Randomize the (X,Y) position of each X-ray photon events according
-# to a Gaussian distribution of given sigma.
-#
-# References:
-# [1] G. Scheellenberger, T.H. Reiprich, L. Lovisari, J. Nevalainen & L. David
-# 2015, A&A, 575, A30
-#
-#
-# Aaron LI
-# Created: 2016-03-24
-# Updated: 2016-03-24
-#
-
-from astropy.io import fits
-import numpy as np
-
-import os
-import sys
-import datetime
-import argparse
-
-
-CHANDRA_ARCSEC_PER_PIXEL = 0.492
-
-def randomize_events(infile, outfile, sigma, clobber=False):
- """
- Randomize the position (X,Y) of each X-ray event according to a
- specified size/sigma Gaussian distribution.
- """
- sigma_pix = sigma / CHANDRA_ARCSEC_PER_PIXEL
- evt_fits = fits.open(infile)
- evt_table = evt_fits[1].data
- # (X,Y) physical coordinate
- evt_x = evt_table["x"]
- evt_y = evt_table["y"]
- rand_x = np.random.normal(scale=sigma_pix, size=evt_x.shape)\
- .astype(evt_x.dtype)
- rand_y = np.random.normal(scale=sigma_pix, size=evt_y.shape)\
- .astype(evt_y.dtype)
- evt_x += rand_x
- evt_y += rand_y
- # Add history to FITS header
- evt_hdr = evt_fits[1].header
- evt_hdr.add_history("TOOL: %s @ %s" % (
- os.path.basename(sys.argv[0]),
- datetime.datetime.utcnow().isoformat()))
- evt_hdr.add_history("COMMAND: %s" % " ".join(sys.argv))
- evt_fits.writeto(outfile, clobber=clobber, checksum=True)
-
-
-def main():
- parser = argparse.ArgumentParser(
- description="Randomize the (X,Y) of each X-ray event")
- parser.add_argument("infile", help="input event file")
- parser.add_argument("outfile", help="output randomized event file")
- parser.add_argument("-s", "--sigma", dest="sigma",
- required=True, type=float,
- help="sigma/size of the Gaussian distribution used" + \
- "to randomize the position of events (unit: arcsec)")
- parser.add_argument("-C", "--clobber", dest="clobber",
- action="store_true", help="overwrite output file if exists")
- args = parser.parse_args()
-
- randomize_events(args.infile, args.outfile,
- sigma=args.sigma, clobber=args.clobber)
-
-
-if __name__ == "__main__":
- main()
-