aboutsummaryrefslogtreecommitdiffstats
path: root/astro/calc_psd.py
blob: f93335c5500d6770fa921f709089e157a4346a51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python3
#
# Copyright (c) 2015-2017 Aaron LI
# MIT License
#

"""
Compute the radial (i.e., azimuthally averaged) power spectral density
(a.k.a. power spectrum) of a FITS image.

NOTE: The input image must be square.

Credit
------
* Radially averaged power spectrum of 2D real-valued matrix
  Evan Ruzanski
  'raPsd2d.m'
  https://www.mathworks.com/matlabcentral/fileexchange/23636-radially-averaged-power-spectrum-of-2d-real-valued-matrix
"""

import os
import argparse
from functools import lru_cache

import numpy as np
from astropy.io import fits

import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure

plt.style.use("ggplot")


class PSD:
    """
    Computes the 2D power spectral density and the azimuthally averaged power
    spectral density (i.e., 1D radial power spectrum).
    """
    def __init__(self, image, pixel=(1.0, "pixel"), step=None):
        self.image = np.array(image, dtype=np.float)
        self.shape = self.image.shape
        if self.shape[0] != self.shape[1]:
            raise ValueError("input image is not square!")

        self.pixel = pixel
        self.step = step
        if step is not None and step <= 1:
            raise ValueError("step must be greater than 1")

    @property
    @lru_cache()
    def radii(self):
        """
        The radial (frequency) points where to calculate the powers.
        If ``self.step`` is ``None``, then the powers at every frequency
        point are calculated.  If ``self.step`` is specified, then a
        log-even grid is adopted, which can greatly save computation time
        for large images.
        """
        dim_half = (self.shape[0] + 1) // 2
        x = np.arange(dim_half)
        if self.step is None:
            return x
        else:
            xmax = x.max()
            x2 = list(x[x*(self.step-1) <= 1])
            v1 = x[len(x2)]
            while v1 < xmax:
                x2.append(v1)
                v1 *= self.step
            x2.append(xmax)
            return np.array(x2)

    @property
    @lru_cache()
    def frequencies(self):
        """
        The (spatial) frequencies w.r.t. the above radii.
        """
        radii = self.radii
        freqs = (1 / (self.shape[0] * self.pixel[0])) * radii
        return freqs

    def calc_psd2d(self):
        """
        Computes the 2D power spectral density of the given image.
        Note that the low frequency components are shifted to the center
        of the FFT'ed image.

        NOTE
        ----
        The zero-frequency component is shifted to position of index (0-based)
            (ceil((n-1) / 2), ceil((m-1) / 2)),
        where (n, m) are the number of rows and columns of the image/psd2d.

        Returns
        -------
        2D power spectral density, which has dimension of ${input_unit}^2.
        """
        print("Calculating 2D power spectral density ... ", end="", flush=True)
        rows, cols = self.shape
        # Compute the power spectral density (i.e., power spectrum)
        imgf = np.fft.fftshift(np.fft.fft2(self.image))
        # Normalization w.r.t. image size
        norm = rows * cols * self.pixel[0]**2
        self.psd2d = (np.abs(imgf) ** 2) / norm
        print("DONE", flush=True)
        return self.psd2d

    def calc_psd(self):
        """
        Azimuthally average the above 2D power spectral density to generate
        the 1D radial power spectral density.

        Returns
        -------
        frequencies: 1D float `~numpy.ndarray`
            Spatial frequencies, [{pixel_unit}^(-1)]
        psd1d, psd1d_err: 1D float `~numpy.ndarray`
            Azimuthally averaged powers and their standard deviations at
            each (radial) spatial frequency bin.
        """
        if not hasattr(self, "ps2d") or self.psd2d is None:
            self.calc_psd2d()

        print("Azimuthally averaging 2D power spectral density ... ",
              end="", flush=True)
        dim = self.shape[0]
        dim_half = (dim+1) // 2
        # NOTE:
        # The zero-frequency component is shifted to position of index
        # (0-based): (ceil((n-1) / 2), ceil((m-1) / 2))
        px = np.arange(dim_half-dim, dim_half)
        x, y = np.meshgrid(px, px)
        rho, phi = self.cart2pol(x, y)

        radii = self.radii
        nr = len(radii)
        if nr > 100:
            print("\n    ... %d data points, may take a while ... " % nr,
                  end="", flush=True)
        else:
            print(" %d data points ... " % nr, end="", flush=True)
        psd1d = np.zeros(nr)
        psd1d_err = np.zeros(nr)
        for i, r in enumerate(radii):
            if (i+1) % 100 == 0:
                percent = 100 * (i+1) / nr
                print("%.1f%% ... " % percent, end="", flush=True)
            ii, jj = (rho <= r).nonzero()
            rho[ii, jj] = np.inf
            data = self.psd2d[ii, jj]
            psd1d[i] = np.mean(data)
            psd1d_err[i] = np.std(data)
        print("DONE", flush=True)

        self.psd1d = psd1d
        self.psd1d_err = psd1d_err
        return (self.frequencies, psd1d, psd1d_err)

    @staticmethod
    def cart2pol(x, y):
        """
        Convert Cartesian coordinates to polar coordinates.
        """
        rho = np.sqrt(x**2 + y**2)
        phi = np.arctan2(y, x)
        return (rho, phi)

    @staticmethod
    def pol2cart(rho, phi):
        """
        Convert polar coordinates to Cartesian coordinates.
        """
        x = rho * np.cos(phi)
        y = rho * np.sin(phi)
        return (x, y)

    def plot(self, ax=None, fig=None):
        """
        Make a plot of the 1D radial PSD with matplotlib.
        """
        if ax is None:
            fig, ax = plt.subplots(1, 1)

        freqs = self.frequencies
        xmin = freqs[1] / 1.2  # ignore the first 0
        xmax = freqs[-1] * 1.1
        ymin = np.min(self.psd1d) / 10.0
        ymax = np.max(self.psd1d[1:] + self.psd1d_err[1:]) * 2

        ax.errorbar(freqs, self.psd1d, yerr=self.psd1d_err, fmt="none")
        ax.plot(freqs, self.psd1d, "ko")
        ax.set_xscale("log")
        ax.set_yscale("log")
        ax.set_xlim(xmin, xmax)
        ax.set_ylim(ymin, ymax)
        ax.set_title("Radial (Azimuthally Averaged) Power Spectral Density")
        ax.set_xlabel(r"k [%s$^{-1}$]" % self.pixel[1])
        ax.set_ylabel("Power")
        fig.tight_layout()
        return (fig, ax)


def open_image(infile):
    """
    Open the slice image and return its header and 2D image data.

    NOTE
    ----
    The input slice image may have following dimensions:
    * NAXIS=2: [Y, X]
    * NAXIS=3: [FREQ=1, Y, X]
    * NAXIS=4: [STOKES=1, FREQ=1, Y, X]

    NOTE
    ----
    Only open slice image that has only ONE frequency and ONE Stokes
    parameter.

    Returns
    -------
    header : `~astropy.io.fits.Header`
    image : 2D `~numpy.ndarray`
        The 2D [Y, X] image part of the slice image.
    """
    with fits.open(infile) as f:
        header = f[0].header
        data = f[0].data
    if data.ndim == 2:
        # NAXIS=2: [Y, X]
        image = data
    elif data.ndim == 3 and data.shape[0] == 1:
        # NAXIS=3: [FREQ=1, Y, X]
        image = data[0, :, :]
    elif data.ndim == 4 and data.shape[0] == 1 and data.shape[1] == 1:
        # NAXIS=4: [STOKES=1, FREQ=1, Y, X]
        image = data[0, 0, :, :]
    else:
        raise ValueError("Slice '{0}' has invalid dimensions: {1}".format(
            infile, data.shape))
    return (header, image)


def main():
    parser = argparse.ArgumentParser(
            description="Calculate radial power spectral density")
    parser.add_argument("-C", "--clobber", dest="clobber", action="store_true",
                        help="overwrite the output files if already exist")
    parser.add_argument("-s", "--step", dest="step", type=float, default=None,
                        help="step ratio between 2 consecutive radial " +
                        "frequency points, must be > 1, thus a log-even " +
                        "grid is adopted; if not specified, then the power " +
                        "at every frequency point will be calculated, " +
                        "i.e., using a even grid, which may be very slow " +
                        "for very large images!")
    parser.add_argument("-p", "--plot", dest="plot", action="store_true",
                        help="plot the PSD and save as a PNG image")
    parser.add_argument("-i", "--infile", dest="infile", nargs="+",
                        help="input FITS image(s); if multiple images " +
                        "are provided, they are added first.")
    parser.add_argument("-o", "--outfile", dest="outfile", required=True,
                        help="output TXT file to save the PSD data")
    args = parser.parse_args()

    if args.plot:
        plotfile = os.path.splitext(args.outfile)[0] + ".png"

    # Check output files whether already exists
    if (not args.clobber) and os.path.exists(args.outfile):
        raise OSError("outfile '%s' already exists" % args.outfile)
    if args.plot:
        if (not args.clobber) and os.path.exists(plotfile):
            raise OSError("output plot file '%s' already exists" % plotfile)

    header, image = open_image(args.infile[0])
    bunit = header.get("BUNIT", "???")
    print("Read image from: %s" % args.infile[0])
    print("Data unit: %s" % bunit)

    for fn in args.infile[1:]:
        print("Adding additional image: %s" % fn)
        header2, image2 = open_image(fn)
        bunit2 = header2.get("BUNIT", "???")
        if bunit2 == bunit:
            image += image2
        else:
            raise ValueError("image has different unit: %s" % bunit2)

    psdobj = PSD(image=image, step=args.step)
    freqs, psd, psd_err = psdobj.calc_psd()

    # Write out PSD results
    psd_data = np.column_stack((freqs, psd, psd_err))
    np.savetxt(args.outfile, psd_data, header="freqs  psd  psd_err")
    print("Saved PSD data to: %s" % args.outfile)

    if args.plot:
        # Make and save a plot
        fig = Figure(figsize=(10, 8))
        FigureCanvas(fig)
        ax = fig.add_subplot(111)
        psdobj.plot(ax=ax, fig=fig)
        fig.savefig(plotfile, format="png", dpi=150)
        print("Plotted PSD and saved to image: %s" % plotfile)


if __name__ == "__main__":
    main()