1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
|
#!/usr/bin/env python3
#
# Copyright (c) 2015-2017 Aaron LI
# MIT License
#
"""
Compute the radial (i.e., azimuthally averaged) power spectral density
(a.k.a. power spectrum) of a FITS image.
NOTE: The input image must be square.
Credit
------
* Radially averaged power spectrum of 2D real-valued matrix
Evan Ruzanski
'raPsd2d.m'
https://www.mathworks.com/matlabcentral/fileexchange/23636-radially-averaged-power-spectrum-of-2d-real-valued-matrix
"""
import os
import argparse
from functools import lru_cache
import numpy as np
from astropy.io import fits
import matplotlib
import matplotlib.style
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
# Matplotlib settings
matplotlib.style.use("ggplot")
for k, v in [("font.family", "monospace"),
("xtick.major.size", 7.0),
("xtick.major.width", 2.0),
("xtick.minor.size", 4.0),
("xtick.minor.width", 1.5),
("ytick.major.size", 7.0),
("ytick.major.width", 2.0),
("ytick.minor.size", 4.0),
("ytick.minor.width", 1.5)]:
matplotlib.rcParams[k] = v
class PSD:
"""
Calculate the 2D power spectral density and then apply azimuthal
averaging to obtain the 1D radial power spectrum.
Parameters
----------
image : 2D `~numpy.ndarray`
Input image array
pixel : (float, str), optional
Specify the pixel size and its unit of the image.
e.g., (0.33, "arcmin")
step : float, optional
By default, a logarithmic grid with the specified step ratio
(default: 1.1) will be used to do the azimuthal averages.
If specified a value <=1 or None, then an evenly pixel-by-pixel
(along radial direction) averaging scheme is adopted.
meanstd : bool, optional
By default, the median and 1.4826*MAD will be calculated for
each averaging annulus. If ``meanstd=True``, then calculate
the mean and standard deviation instead.
"""
def __init__(self, image, pixel=(1.0, "pixel"), step=1.1,
meanstd=False, bunit=None):
self.image = np.array(image, dtype=float)
if image.ndim != 2:
raise ValueError("input image is not 2D!")
self.shape = self.image.shape
if self.shape[0] != self.shape[1]:
raise ValueError("input image is not square!")
self.pixel = pixel
if step is None or step <= 1:
self.step = None
else:
self.step = step
self.meanstd = meanstd
self.bunit = bunit
@property
@lru_cache()
def radii(self):
"""
The radial (frequency) points where to calculate the powers.
If ``self.step`` is ``None``, then the powers at every frequency
point are calculated. If ``self.step`` is specified, then a
log-even grid is adopted, which can greatly save computation time
for large images.
"""
dim_half = (self.shape[0] + 1) // 2
x = np.arange(dim_half)
if self.step is None:
return x
else:
xmax = x.max()
x2 = list(x[x*(self.step-1) <= 1])
v1 = x[len(x2)]
while v1 < xmax:
x2.append(v1)
v1 *= self.step
x2.append(xmax)
return np.array(x2)
@property
@lru_cache()
def frequencies(self):
"""
The (spatial) frequencies w.r.t. the above radii.
"""
radii = self.radii
freqs = (1 / (self.shape[0] * self.pixel[0])) * radii
return freqs
def calc_psd2d(self):
"""
Computes the 2D power spectral density of the given image.
Note that the low frequency components are shifted to the center
of the FFT'ed image.
NOTE
----
The zero-frequency component is shifted to position of index (0-based)
(ceil((n-1) / 2), ceil((m-1) / 2)),
where (n, m) are the number of rows and columns of the image/psd2d.
Returns
-------
2D power spectral density, which has dimension of ${input_unit}^2.
"""
print("Calculating 2D power spectral density ... ", end="", flush=True)
rows, cols = self.shape
imgf = np.fft.fftshift(np.fft.fft2(self.image))
# NOTE: normalize w.r.t. image size
norm = rows * cols * self.pixel[0]**2
self.psd2d = (np.abs(imgf) ** 2) / norm
print("DONE", flush=True)
return self.psd2d
def calc_psd(self):
"""
Azimuthally average the above 2D power spectral density to obtain
the 1D radial power spectral density.
Returns
-------
psd1d : 2D `~numpy.ndarray`
2D array of shape (nbins, 4) including such 4 columns:
+ spatial frequencies, [{pixel_unit}^(-1)]
+ average (median / mean) powers within each averaging bin
+ power errors (1.4826*MAD / standard deviation)
+ number of averaging cells
Attributes
----------
psd1d
"""
if not hasattr(self, "ps2d") or self.psd2d is None:
self.calc_psd2d()
print("Azimuthally averaging 2D power spectral density ... ",
end="", flush=True)
dim = self.shape[0]
dim_half = (dim+1) // 2
# NOTE:
# The zero-frequency component is shifted to position of index
# (0-based): (ceil((n-1) / 2), ceil((m-1) / 2))
px = np.arange(dim_half-dim, dim_half)
x, y = np.meshgrid(px, px)
rho = np.sqrt(x**2 + y**2)
radii = self.radii
nr = len(radii)
if nr > 100:
print("\n ... %d data points, may take a while ... " % nr,
end="", flush=True)
else:
print(" %d data points ... " % nr, end="", flush=True)
psd1d = np.zeros(shape=(nr, 4))
psd1d[:, 0] = self.frequencies
for i, r in enumerate(radii):
if (i+1) % 100 == 0:
percent = 100 * (i+1) / nr
print("%.1f%% ... " % percent, end="", flush=True)
ii, jj = (rho <= r).nonzero()
rho[ii, jj] = np.inf
cells = self.psd2d[ii, jj]
psd1d[i, 3] = len(cells)
if self.meanstd:
psd1d[i, 1] = np.mean(cells)
psd1d[i, 2] = np.std(cells)
else:
median = np.median(cells)
mad = np.median(np.abs(cells - median))
psd1d[i, 1] = median
psd1d[i, 2] = mad * 1.4826
print("DONE", flush=True)
self.psd1d = psd1d
return psd1d
def save(self, outfile):
data = self.psd1d
header = [
"pixel: %s [%s]" % self.pixel,
"frequency: [%s^-1]" % self.pixel[1],
]
if self.meanstd:
header += [
"psd1d: *mean* powers of radial averaging annuli",
"psd1d_err: *standard deviation*",
]
else:
header += [
"psd1d: *median* powers of radial averaging annuli",
"psd1d_err: 1.4826*MAD (median absolute deviation)",
]
header += [
"n_cells: number of averaging cells",
"",
"frequency psd1d psd1d_err n_cells"
]
np.savetxt(outfile, data, header="\n".join(header))
print("Saved PSD data to: %s" % outfile)
def plot(self, ax):
"""
Make a plot of the 1D radial power spectrum.
"""
data = self.psd1d
freqs = data[:, 0]
psd1d = data[:, 1]
psd1d_err = data[:, 2]
xmin = freqs[1] / 1.2 # ignore the first 0
xmax = freqs[-1] * 1.1
ymin = np.min(psd1d) / 10.0
ymax = np.max(psd1d[1:] + psd1d_err[1:]) * 1.5
if self.meanstd:
label = "mean"
labelerr = "standard deviation"
else:
label = "median"
labelerr = "1.4826*MAD"
if self.bunit:
ylabel = r"Power [(%s/%s)$^2$]" % (self.bunit, self.pixel[1])
else:
ylabel = "Power"
ax.errorbar(freqs, psd1d, yerr=psd1d_err,
fmt="none", label=labelerr)
ax.plot(freqs, psd1d, marker="o", label=label)
ax.set(xscale="log", yscale="log",
xlim=(xmin, xmax), ylim=(ymin, ymax),
title="Radial (Azimuthally Averaged) Power Spectral Density",
xlabel=r"$k$ [%s$^{-1}$]" % self.pixel[1],
ylabel=ylabel)
ax.legend()
if self.pixel[1] != "pixel":
# Add an additional X axis for pixel-based frequencies
ax2 = ax.twiny()
ax2.set_xscale(ax.get_xscale())
pix_ticks = np.logspace(-4, 0, num=5) # [pixel^-1]
ax2.set_xticks(pix_ticks)
ax2.set_xticklabels([r"10$^{%d}$" % ep
for ep in np.log10(pix_ticks)])
x1_min, x1_max = ax.get_xlim()
x2_min, x2_max = x1_min*self.pixel[0], x1_max*self.pixel[0]
ax2.set_xlim(x2_min, x2_max)
ax2.set_xlabel(r"$k$ [pixel$^{-1}$] (1 pixel = %.2f %s)" %
self.pixel)
ax2.grid(False)
# Raise title position to avoid overlapping
ax.title.set_position([0.5, 1.1])
return (ax, ax2)
else:
return ax
def open_image(infile):
"""
Open the slice image and return its header and 2D image data.
NOTE
----
The input slice image may have following dimensions:
* NAXIS=2: [Y, X]
* NAXIS=3: [FREQ=1, Y, X]
* NAXIS=4: [STOKES=1, FREQ=1, Y, X]
NOTE
----
Only open slice image that has only ONE frequency and ONE Stokes
parameter.
Returns
-------
header : `~astropy.io.fits.Header`
image : 2D `~numpy.ndarray`
The 2D [Y, X] image part of the slice image.
"""
with fits.open(infile) as f:
header = f[0].header
data = f[0].data
if data.ndim == 2:
# NAXIS=2: [Y, X]
image = data
elif data.ndim == 3 and data.shape[0] == 1:
# NAXIS=3: [FREQ=1, Y, X]
image = data[0, :, :]
elif data.ndim == 4 and data.shape[0] == 1 and data.shape[1] == 1:
# NAXIS=4: [STOKES=1, FREQ=1, Y, X]
image = data[0, 0, :, :]
else:
raise ValueError("Slice '{0}' has invalid dimensions: {1}".format(
infile, data.shape))
return (header, image)
def main():
parser = argparse.ArgumentParser(
description="Calculate radial power spectral density")
parser.add_argument("-C", "--clobber", dest="clobber", action="store_true",
help="overwrite the output files if already exist")
parser.add_argument("-c", "--center", dest="center", type=int,
help="crop the central box region of specified " +
"size before calculating the power spectrum")
parser.add_argument("-s", "--step", dest="step", type=float, default=1.1,
help="step ratio (>1; default: 1.1) between 2 " +
"consecutive radial frequency points, " +
"i.e., a logarithmic grid used. " +
"if specified a value <=1, then the power at every " +
"radial frequency point will be calculated, " +
"i.e., using a even grid, which may be very slow " +
"for very large images!")
parser.add_argument("-p", "--pixelsize", dest="pixelsize", type=float,
help="image spatial pixel size [arcsec] " +
"(will try to obtain from FITS header)")
parser.add_argument("-m", "--mean-std", dest="meanstd",
action="store_true",
help="calculate the mean and standard deviation " +
"for each averaging annulus instead of the median " +
"and 1.4826*MAD")
parser.add_argument("-P", "--no-plot", dest="noplot", action="store_true",
help="do NOT plot the PSD and save")
parser.add_argument("-i", "--infile", dest="infile", nargs="+",
help="input FITS image(s); if multiple images " +
"are provided, they are added first.")
parser.add_argument("-o", "--outfile", dest="outfile", required=True,
help="output TXT file to save the PSD data")
args = parser.parse_args()
if (not args.clobber) and os.path.exists(args.outfile):
raise OSError("outfile '%s' already exists" % args.outfile)
header, image = open_image(args.infile[0])
bunit = header.get("BUNIT", "???")
print("Read image from: %s" % args.infile[0])
print("Image size: %dx%d" % tuple(reversed(image.shape)))
print("Data unit: %s" % bunit)
if args.pixelsize:
pixel = (args.pixelsize/60, "arcmin") # [arcsec]->[arcmin]
else:
try:
pixel = (header["PixSize"]/60, "arcmin") # [arcsec]->[arcmin]
except KeyError:
try:
pixel = (abs(header["CDELT1"])*60, "arcmin") # [deg]->[arcmin]
except KeyError:
pixel = (1.0, "pixel")
print("Image pixel size: %.2f [%s]" % pixel)
for fn in args.infile[1:]:
print("Adding additional image: %s" % fn)
header2, image2 = open_image(fn)
bunit2 = header2.get("BUNIT", "???")
if bunit2 == bunit:
image += image2
else:
raise ValueError("image has different unit: %s" % bunit2)
if args.center:
csize = args.center
if csize >= min(image.shape):
raise ValueError("--center %d exceeds image size" % csize)
rows, cols = image.shape
rc, cc = rows//2, cols//2
cs1, cs2 = csize//2, (csize+1)//2
image = image[(rc-cs1):(rc+cs2), (cc-cs1):(cc+cs2)]
print("Cropped image with central box of size: %dx%d" % image.shape)
psd = PSD(image=image, pixel=pixel, step=args.step,
meanstd=args.meanstd, bunit=bunit)
psd.calc_psd()
psd.save(args.outfile)
if not args.noplot:
fig = Figure(figsize=(8, 8), dpi=150)
FigureCanvas(fig)
ax = fig.add_subplot(1, 1, 1)
psd.plot(ax=ax)
fig.tight_layout()
plotfile = os.path.splitext(args.outfile)[0] + ".png"
fig.savefig(plotfile)
print("Plotted PSD and saved to image: %s" % plotfile)
if __name__ == "__main__":
main()
|