1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
#!/usr/bin/env python3
#
# Copyright (c) Weitian LI <weitian@aaronly.me>
# MIT license
#
"""
Calculate the total power within the EoR window on the 2D power spectrum.
The adopted EoR window definition is from [thyagarajan2013],Eq.(26),Fig.(11).
.. [thyagarajan2013]
Thyagarajan et al. 2013, ApJ, 776, 6
"""
import argparse
from functools import lru_cache
import numpy as np
from astropy.io import fits
from astropy.cosmology import FlatLambdaCDM
import astropy.constants as ac
import matplotlib
import matplotlib.style
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
# Matplotlib settings
matplotlib.style.use("ggplot")
for k, v in [("font.family", "monospace"),
("image.cmap", "jet"),
("xtick.major.size", 7.0),
("xtick.major.width", 2.0),
("xtick.minor.size", 4.0),
("xtick.minor.width", 1.5),
("ytick.major.size", 7.0),
("ytick.major.width", 2.0),
("ytick.minor.size", 4.0),
("ytick.minor.width", 1.5)]:
matplotlib.rcParams[k] = v
# HI line frequency
freq21cm = 1420.405751 # [MHz]
# Adopted cosmology
H0 = 71.0 # [km/s/Mpc]
OmegaM0 = 0.27
cosmo = FlatLambdaCDM(H0=H0, Om0=OmegaM0)
@lru_cache()
def freq2z(freq):
z = freq21cm / freq - 1.0
return z
class PS2D:
"""
2D cylindrically averaged power spectrum; calculated by ``ps2d.py``.
Parameters
----------
fov : float
instrumental field of view (FoV)
Unit: [deg]
e : float, optional
Thyagarajan proposed characteristic convolution width factor,
generally 0-2; default: 2.0
Attributes
----------
ps2d : 2D `~numpy.ndarray`
Shape: [n_k_los, n_k_perp]
"""
def __init__(self, infile, fov, e=2.0,
k_perp_min=None, k_perp_max=None,
k_los_min=None, k_los_max=None):
self.infile = infile
with fits.open(infile) as f:
self.header = f[0].header
self.ps2d = f[0].data[0, :, :]
self.ps2d_err = (f[0].data[1, :, :] + f[0].data[2, :, :]) / 2
self.freqc = self.header["Freq_C"]
self.freqmin = self.header["Freq_Min"]
self.freqmax = self.header["Freq_Max"]
self.bandwidth = self.freqmax - self.freqmin # [MHz]
self.zc = self.header["Z_C"]
self.pixelsize = self.header["PixSize"]
self.unit = self.header["BUNIT"]
self.set(fov=fov, e=e, k_perp_min=k_perp_min, k_perp_max=k_perp_max,
k_los_min=k_los_min, k_los_max=k_los_max)
def set(self, **kwargs):
for key, value in kwargs.items():
if key in ["fov", "e", "k_perp_min", "k_perp_max",
"k_los_min", "k_los_max"]:
if value is not None:
setattr(self, key, value)
else:
raise ValueError("invalid item: %s" % key)
@property
def power_unit(self):
return self.unit.split(" ")[0] # [K^2] or [mK^2]
@property
def k_perp(self):
dk = self.header["CDELT1P"]
nk = self.header["NAXIS1"]
return np.arange(nk) * dk
@property
def k_los(self):
dk = self.header["CDELT2P"]
nk = self.header["NAXIS2"]
return np.arange(nk) * dk
@property
def k_perp_min(self):
try:
return self._k_perp_min
except AttributeError:
return self.k_perp[1] # ignore the first 0
@k_perp_min.setter
def k_perp_min(self, value):
self._k_perp_min = value
@property
def k_perp_max(self):
try:
return self._k_perp_max
except AttributeError:
return self.k_perp[-1]
@k_perp_max.setter
def k_perp_max(self, value):
self._k_perp_max = value
@property
def k_los_min(self):
try:
return self._k_los_min
except AttributeError:
return self.k_los[1] # ignore the first 0
@k_los_min.setter
def k_los_min(self, value):
self._k_los_min = value
@property
def k_los_max(self):
try:
return self._k_los_max
except AttributeError:
return self.k_los[-1]
@k_los_max.setter
def k_los_max(self, value):
self._k_los_max = value
def sum_power(self, window=None):
"""
Sum the power within the defined window.
NOTE: The cylindrical average should be accounted for.
Parameters
----------
window : `~numpy.ndarray`, optional
The mask array that defines the EoR window region.
If ``None``, then use ``self.eor_window``.
Returns
-------
power : float
The total power within the EoR window.
error : float
The uncertainty of the total power.
"""
if window is None:
window = self.eor_window
k_perp = self.k_perp
k_los = self.k_los
dk_perp = k_perp[1] - k_perp[0]
dk_los = k_los[1] - k_los[0]
volume = np.zeros_like(self.ps2d)
volume[0, :] = 2*np.pi * k_perp * dk_perp * dk_los
for i in range(1, len(k_los)):
# The extra "2" to account for the average on +k_los and -k_los
volume[i, :] = 2*np.pi * k_perp * dk_perp * dk_los * 2
power = np.sum(self.ps2d * window * volume)
error = np.sqrt(np.sum((self.ps2d_err * window * volume)**2))
return (power, error)
@property
def eor_window(self):
"""
Determine the EoR window region.
Returns
-------
window : 2D bool `~numpy.ndarray`
2D array mask of the same size of the power spectrum indicating
the defined EoR window region.
"""
if hasattr(self, "_window"):
return self._window
print("k_perp: [%g, %g] [Mpc^-1]" % (self.k_perp_min, self.k_perp_max))
print("k_los: [%g, %g] [Mpc^-1]" % (self.k_los_min, self.k_los_max))
print("FoV: %.1f [deg]" % self.fov)
print("e_ConvWidth: %.1f" % self.e)
window = np.ones_like(self.ps2d, dtype=bool)
k_perp = self.k_perp
k_los = self.k_los
k_wedge = self.wedge_edge()
window[k_los < self.k_los_min, :] = False
window[k_los > self.k_los_max, :] = False
window[:, k_perp < self.k_perp_min] = False
window[:, k_perp > self.k_perp_max] = False
for i, k in enumerate(k_wedge):
window[k_los < k, i] = False
self._window = window
return self._window
def header_eor_windowr(self):
header = self.header.copy(strip=True)
header["FoV"] = (self.fov,
"[deg] Field of view to determine EoR window")
header["e_ConvW"] = (self.e, "characteristic convolution width")
header["kper_min"] = (self.k_perp_min, "[Mpc^-1] minimum k_perp")
header["kper_max"] = (self.k_perp_max, "[Mpc^-1] maximum k_perp")
header["klos_min"] = (self.k_los_min, "[Mpc^-1] minimum k_los")
header["klos_max"] = (self.k_los_max, "[Mpc^-1] maximum k_los")
return header
def wedge_edge(self):
"""
The boundary/edge between the EoR window (top-left) and the
foreground wedge (bottom-right).
"""
Hz = cosmo.H(self.zc).value # [km/s/Mpc]
Dc = cosmo.comoving_distance(self.zc).value # [Mpc]
c = ac.c.to("km/s").value # [km/s]
coef = Hz * Dc / (c * (1+self.zc))
term1 = np.sin(np.deg2rad(self.fov)) * self.k_perp # [Mpc^-1]
term2 = ((2*np.pi * self.e * freq21cm / self.bandwidth) /
((1 + self.zc) * Dc)) # [Mpc^-1]
k_los = coef * (term1 + term2)
return k_los
def save_eor_window(self, outfile, clobber=False):
header = self.header_eor_windowr()
hdu = fits.PrimaryHDU(data=self.eor_window.astype(np.int16),
header=header)
try:
hdu.writeto(outfile, overwrite=clobber)
except TypeError:
hdu.writeto(outfile, clobber=clobber)
def plot(self, ax, power=None, colormap="jet"):
"""
Plot the 2D power spectrum with EoR window marked on.
"""
x = self.k_perp
y = self.k_los
y_wedge = self.wedge_edge()
if power is None:
title = "EoR Window (fov=%.1f[deg], e=%.1f)" % (self.fov, self.e)
else:
title = (r"fov=%.1f[deg], e=%.1f, power=%.4e$\pm$%.4e[%s]" %
(self.fov, self.e, power[0], power[1], self.power_unit))
# data
mappable = ax.pcolormesh(x[1:], y[1:],
np.log10(self.ps2d[1:, 1:]),
cmap=colormap)
# EoR window
ax.axvline(x=self.k_perp_min, color="black",
linewidth=2, linestyle="--")
ax.axvline(x=self.k_perp_max, color="black",
linewidth=2, linestyle="--")
ax.axhline(y=self.k_los_min, color="black",
linewidth=2, linestyle="--")
ax.axhline(y=self.k_los_max, color="black",
linewidth=2, linestyle="--")
ax.plot(x, y_wedge, color="black", linewidth=2, linestyle="--")
#
ax.set(xscale="log", yscale="log",
xlim=(x[1], x[-1]), ylim=(y[1], y[-1]),
xlabel=r"k$_{\perp}$ [Mpc$^{-1}$]",
ylabel=r"k$_{||}$ [Mpc$^{-1}$]",
title=title)
cb = ax.figure.colorbar(mappable, ax=ax, pad=0.01, aspect=30)
cb.ax.set_xlabel("[%s]" % self.unit)
return ax
def main():
parser = argparse.ArgumentParser(
description="Determine EoR window region and calculate total power")
parser.add_argument("-F", "--fov", dest="fov",
type=float, required=True,
help="instrumental FoV to determine the EoR window; " +
"SKA1-Low has FoV ~ 3.12 / (nu/200MHz) [deg], i.e., " +
"~5.03 @ 124, ~3.95 @ 158, ~3.18 @ 196")
parser.add_argument("-e", "--conv-width", dest="conv_width",
type=float, default=3.0,
help="characteristic convolution width (default: 3.0)")
parser.add_argument("-p", "--k-perp-min", dest="k_perp_min", type=float,
help="minimum k wavenumber perpendicular to LoS; " +
"unit: [Mpc^-1]")
parser.add_argument("-P", "--k-perp-max", dest="k_perp_max", type=float,
help="maximum k wavenumber perpendicular to LoS")
parser.add_argument("-l", "--k-los-min", dest="k_los_min", type=float,
help="minimum k wavenumber along LoS")
parser.add_argument("-L", "--k-los-max", dest="k_los_max", type=float,
help="maximum k wavenumber along LoS")
parser.add_argument("--save-window", dest="save_window",
help="save the determined EoR window into FITS " +
"file with the provided filename")
parser.add_argument("--plot", dest="plot",
help="plot the 2D power spectrum with the " +
"determined EoR window marked, and save into " +
"the specified file")
parser.add_argument("infile", help="2D power spectrum FITS file")
args = parser.parse_args()
ps2d = PS2D(args.infile, fov=args.fov, e=args.conv_width,
k_perp_min=args.k_perp_min, k_perp_max=args.k_perp_max,
k_los_min=args.k_los_min, k_los_max=args.k_los_max)
window = ps2d.eor_window
power, error = ps2d.sum_power(window)
print("Total power within EoR window: %.4e +/- %.4e [%s]" %
(power, error, ps2d.power_unit))
if args.save_window:
ps2d.save_eor_window(outfile=args.save_window)
print("Saved EoR window to file: %s" % args.save_window)
if args.plot:
fig = Figure(figsize=(8, 8), dpi=150)
FigureCanvas(fig)
ax = fig.add_subplot(1, 1, 1)
ps2d.plot(ax=ax, power=(power, error))
fig.tight_layout()
fig.savefig(args.plot)
print("Plotted 2D PSD with EoR window and saved to: %s" % args.plot)
if __name__ == "__main__":
main()
|