1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Aaron LI
# Created: 2015-12-03
# Updated: 2015-12-05
#
# ChangeLog:
# 2015-12-05:
# * Add class "RegionDS9" to parse region
# 2015-12-10:
# * Support both "erg/cm^2/s" and "photon/cm^2/s" flux units
# * Add argument "--outregion" to also save a region file
#
"""
Generate random point source information for MARX simulation.
And make a point source data list for "marx_pntsrc.py" usage.
"""
__version__ = "0.3.1"
__date__ = "2015-12-10"
import sys
import argparse
import re
import numpy as np
class RegionDS9:
"""
Process DS9 regions.
"""
def __init__(self, shape=None, xc=None, yc=None,
width=None, height=None, rotation=None):
self.shape = shape
self.xc = xc
self.yc = yc
self.width = width
self.height = height
self.rotation = rotation
def parse(self, region):
"""
Parse a DS9 region string and update the instance.
Region syntax:
box(xc,yc,width,height,rotation)
Note:
"width", "height" may have a '"' suffix which means "arcsec" instead
of "degree".
"""
re_box = re.compile(r'^\s*(?P<shape>box)\(\s*(?P<xc>[\d.-]+)\s*,\s*(?P<yc>[\d.-]+)\s*,\s*(?P<width>[\d.-]+"?)\s*,\s*(?P<height>[\d.-]+"?)\s*,\s*(?P<rotation>[\d.-]+)\s*\).*$', re.I)
m_box = re_box.match(region)
if m_box is not None:
self.shape = "box"
self.xc = float(m_box.group("xc"))
self.yc = float(m_box.group("yc"))
self.width = self.parse_dms(m_box.group("width"))
self.height = self.parse_dms(m_box.group("height"))
self.rotation = float(m_box.group("rotation"))
else:
raise NotImplementedError("Only 'box' region supported")
@staticmethod
def parse_dms(ms):
"""
Parse a value in format ?'?" into degree.
"""
re_arcmin = re.compile(r'^\s*(?P<arcmin>[\d.]+)\'.*')
re_arcsec = re.compile(r'^([^\']*\'|)\s*(?P<arcsec>[\d.]+)".*')
m_arcmin = re_arcmin.match(ms)
m_arcsec = re_arcsec.match(ms)
degree = 0.0
if m_arcmin is not None:
degree += float(m_arcmin.group("arcmin")) / 60.0
if m_arcsec is not None:
degree += float(m_arcsec.group("arcsec")) / 3600.0
return degree
class RandCoord:
"""
Randomly generate the coordinates of point sources within a given box
region for MARX simulation.
Arguments:
xc - central X position of the box (degree)
yc - central Y position of the box (degree)
width - width of the box (degree)
height - height of the box (degree)
mindist - minimum distance between each generated coordinate (degree)
"""
def __init__(self, xc, yc, width, height, mindist=0):
self.xc = xc
self.yc = yc
self.width = width
self.height = height
self.mindist = mindist
# Record the generated coordinates: [(x1,y1), (x2,y2), ...]
self.xy = []
def clear(self):
"""
Clear previously generated coordinates.
"""
self.xy = []
def generate(self, n=1):
"""
Generate random coordinates.
"""
coord = []
xmin = self.xc - 0.5 * self.width
xmax = self.xc + 0.5 * self.width
ymin = self.yc - 0.5 * self.height
ymax = self.yc + 0.5 * self.height
i = 0
while i < n:
x = np.random.uniform(low=xmin, high=xmax)
y = np.random.uniform(low=ymin, high=ymax)
if self.checkDistance((x, y)):
i += 1
coord.append((x, y))
self.xy.append((x, y))
return coord
def checkDistance(self, coord):
"""
Check whether the given coordinate has a distance larger than
the specified "mindist"
"""
if len(self.xy) == 0:
return True
else:
xy = np.array(self.xy) # each row represents one coordinate
dist2 = (xy[:, 0] - coord[0])**2 + (xy[:, 1] - coord[1])**2
if all(dist2 >= self.mindist**2):
return True
else:
return False
class RandFlux:
"""
Randomly generate the flux of point sources for MARX simulation.
Arguments:
fmin - minimum flux
fmax - maximum flux
"""
def __init__(self, fmin, fmax):
self.fmin = fmin
self.fmax = fmax
@staticmethod
def fluxDensity(S):
"""
The *differential* number count - flux function: dN(>S)/dS
i.e., density function
Broken power law:
dN/dS = (1) K (S/S_ref)^(-gamma_1); (S < S_b)
(2) K (S_b/S_ref)^(gamma_2-gamma_1) (S/S_ref)^(-gamma_2); (S >= S_b)
K: normalization constant
S_ref: normalization flux; [10^-15 erg/cm^2/s]
gamma_1: faint power-law index
gamma_2: bright power-law index
S_b: break flux; [10^-15 erg/cm^2/s]
Reference:
[1] Kim et al. 2007, ApJ, 659, 29
http://adsabs.harvard.edu/abs/2007ApJ...659...29K
http://hea-www.cfa.harvard.edu/CHAMP/PUBLICATIONS/ChaMP_ncounts.pdf
Table 4: ChaMP: 9.6 [deg^2]: 0.5-8 [keV]: 1.4 (photon index)
Differential number count; broken power law
K (normalization constant): 1557 (+28 / -50)
S_ref (normalization flux): 1.0 [10^-15 erg/cm^2/s]
gamma_1 (faint power-law index): 1.64 (+/- 0.01)
gamma_2 (bright power-law index): 2.48 (+/- 0.05)
S_b (break flux): 22.9 (+/- 1.6) [10^-15 erg/cm^2/s]
f_min (faint flux limit): 0.69 [10^-15 erg/cm^2/s]
f_max (bright flux limit): 6767.74 [10^-15 erg/cm^2/s]
"""
K = 1557 # normalization constant: 1557 (+28 / -50)
S_ref = 1.0 # normalization flux: 1.0 [10^-15 erg/cm^2/s]
gamma_1 = 1.64 # faint power-law index: 1.64 (+/- 0.01)
gamma_2 = 2.48 # bright power-law index: 2.48 (+/- 0.05)
S_b = 22.9 # break flux: 22.9 (+/- 1.6) [10^-15 erg/cm^2/s]
# Adjust unit/magnitude
S = S / 1e-15 # => unit: 10^-15 erg/cm^2/s
if isinstance(S, np.ndarray):
Np = np.zeros(S.shape)
Np[S<=0] = 0.0
Np[S<=S_b] = K * (S[S<=S_b] / S_ref)**(-gamma_1)
Np[S>S_b] = K * (S_b/S_ref)**(gamma_2-gamma_1) * (S[S>S_b] / S_ref)**(-gamma_2)
else:
# "S" is a single number
if S <= 0.0:
Np = 0.0
elif S <= S_b:
Np = K * (S/S_ref)**(-gamma_1)
else:
Np = K * (S_b/S_ref)**(gamma_2-gamma_1) * (S/S_ref)**(-gamma_2)
#
return Np
def generate(self, n=1):
"""
Generate a sample of luminosity values within [min, max] from
the above luminosity distribution.
"""
results = []
# Get the maximum value of the flux number density function,
# which is a monotonically decreasing.
M = self.fluxDensity(self.fmin)
for i in range(n):
while True:
u = np.random.uniform() * M
y = 10 ** np.random.uniform(low=np.log10(self.fmin),
high=np.log10(self.fmax))
if u <= self.fluxDensity(y):
results.append(y)
break
return results
def main():
parser = argparse.ArgumentParser(
description="Randomly generate point sources information for MARX")
parser.add_argument("-V", "--version", action="version",
version="%(prog)s " + "v%s (%s)" % (__version__, __date__))
parser.add_argument("-n", "--number", dest="number", type=int, default=1,
help="number of point sources (default: 1)")
parser.add_argument("-m", "--fmin", dest="fmin",
type=float, default=1e-15,
help="minimum flux (default: 1e-15 erg/cm^2/s)")
parser.add_argument("-M", "--fmax", dest="fmax",
type=float, default=6000e-15,
help="maximum flux (default: 6000e-15 erg/cm^2/s)")
parser.add_argument("-r", "--region", dest="region", required=True,
help="region within which to generate coordinates ('box' only)")
parser.add_argument("-d", "--distance", dest="distance", default="0",
help="minimum distance between coordinates (default: 0) [unit: deg/arcmin]")
parser.add_argument("-u", "--unit", dest="unit", default="erg",
help="unit for input and output flux; 'erg' (default) / 'photon'")
parser.add_argument("-f", "--factor", dest="factor", type=float,
help="conversion factor from 'photon/cm^s/s' to 'erg/cm^2/s' (required if unit='photon')")
parser.add_argument("-o", "--outfile", dest="outfile",
help="output file to save the generate information list")
parser.add_argument("-O", "--outregion", dest="outregion",
help="write the generate information list as a DS9 region file")
args = parser.parse_args()
# Check flux unit
if args.unit == "erg":
unit = "erg/cm^2/s"
fmin = args.fmin
fmax = args.fmax
factor = 1.0
elif args.unit == "photon":
unit = "photon/cm^2/s"
factor = args.factor
try:
fmin = args.fmin / factor
fmax = args.fmax / factor
except NameError:
raise ValueError("argument '--factor' required")
else:
raise ValueError("unsupported flux unit")
region = RegionDS9()
region.parse(args.region)
# Check the box rotation
if not (abs(region.rotation) <= 1.0 or abs(region.rotation-360) <= 1.0):
raise NotImplementedError("rotated 'box' region not supported")
# Minimum distance between generated coordinates
try:
mindist = float(args.distance)
except ValueError:
mindist = region.parse_dms(args.distance)
randcoord = RandCoord(region.xc, region.yc, region.width, region.height,
mindist=mindist)
randflux = RandFlux(fmin, fmax)
coord = randcoord.generate(n=args.number)
flux = randflux.generate(n=args.number)
if args.outfile:
outfile = open(args.outfile, "w")
else:
outfile = sys.stdout
print("# region: %s" % args.region, file=outfile)
print("# mindist: %.9f [deg]" % mindist, file=outfile)
print("# f_min: %.9g; f_max: %.9g [%s]" % (fmin, fmax, unit), file=outfile)
print("# factor: %g [photon/cm^2/s] / [erg/cm^2/s]" % factor, file=outfile)
print("# R.A.[deg] Dec.[deg] Flux[%s]" % unit, file=outfile)
for ((ra, dec), f) in zip(coord, flux):
print("%.9f %.9f %.9g" % (ra, dec, f*factor), file=outfile)
if args.outfile:
outfile.close()
# Save the generated information as a DS9 region file if specified
if args.outregion:
reg_r = '3"'
reg_header = ["# Region file format: DS9 version 4.1", "fk5"]
regions = [
"circle(%.9f,%.9f,%s) # text={%.9g}" % \
(ra, dec, reg_r, f*factor) \
for ((ra, dec), f) in zip(coord, flux)
]
regfile = open(args.outregion, "w")
regfile.write("\n".join(reg_header + regions))
regfile.close()
if __name__ == "__main__":
main()
|