1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
#!/usr/bin/env python3
#
# Copyright (c) 2016-2017 Sphesihle Makhathini
# Copyright (c) 2017 Aaron LI
# GNU General Public License v2.0 (GPLv2)
#
"""
MSUtils - A set of CASA MeasurementSet manipulation tools
Based on: https://github.com/SpheMakh/msutils
"""
import argparse
from collections import OrderedDict
from pprint import pprint
import numpy as np
from casacore import tables
from casacore.tables import table, maketabdesc, makearrcoldesc
def getinfo(msname):
"""
Summarize the basic information of a MS.
Parameters
----------
msname : str
Name of the MS
"""
tab = tables.table(msname, ack=False)
info = OrderedDict([
("Ncol", tab.ncols()),
("Nrow", tab.nrows()),
("Ncor", tab.getcell("DATA", 0).shape[-1]),
("Info", tab.info()),
("Keywords", tab.getkeywords().keys()),
("Columns", tab.colnames()),
("ColKeywords", OrderedDict([
(cname, tab.getcolkeywords(cname)) for cname in tab.colnames()
])),
("Exposure", tab.getcell("EXPOSURE", 0)),
("FIELD", OrderedDict()),
("SPW", OrderedDict()),
("SCAN", OrderedDict()),
])
tabs = {
"FIELD": tables.table(msname+"/FIELD", ack=False),
"SPW": tables.table(msname+"/SPECTRAL_WINDOW", ack=False),
}
field_ids = tabs["FIELD"].getcol("SOURCE_ID")
info["FIELD"]["STATE_ID"] = [None]*len(field_ids)
info["FIELD"]["PERIOD"] = [None]*len(field_ids)
for fid in field_ids:
ftab = tab.query("FIELD_ID=={0:d}".format(fid))
state_id = ftab.getcol("STATE_ID")[0]
info["FIELD"]["STATE_ID"][fid] = int(state_id)
scans = {}
total_length = 0
for scan in set(ftab.getcol("SCAN_NUMBER")):
stab = ftab.query("SCAN_NUMBER=={0:d}".format(scan))
length = (stab.getcol("TIME").max() - stab.getcol("TIME").min())
stab.close()
scans[str(scan)] = length
total_length += length
info["SCAN"][str(fid)] = scans
info["FIELD"]["PERIOD"][fid] = total_length
ftab.close()
for key, _tab in tabs.items():
if key == "SPW":
colnames = ["CHAN_FREQ", "MEAS_FREQ_REF",
"REF_FREQUENCY", "TOTAL_BANDWIDTH",
"NAME", "NUM_CHAN", "IF_CONV_CHAIN",
"NET_SIDEBAND", "FREQ_GROUP_NAME"]
else:
colnames = _tab.colnames()
for name in colnames:
try:
info[key][name] = _tab.getcol(name).tolist()
except AttributeError:
info[key][name] = _tab.getcol(name)
_tab.close()
# Get the minimum and maximum baselines
uv = tab.getcol("UVW")[:, :2]
baselines = np.sqrt(np.sum(uv**2, axis=1))
info["Baseline"] = {"min": baselines.min(), "max": baselines.max()}
tab.close()
return info
def addcol(msname, colname=None, shape=None,
data_desc_type="array",
valuetype=None,
init_with=None,
coldesc=None,
coldmi=None,
clone="DATA",
rowchunk=None):
"""
Add a column to MS
Parameters
----------
msanme : str
MS to which to add the column
colname : str
Name of the column to be added
shape : shape
valuetype : data type
data_desc_type :
* ``scalar`` - scalar elements
* ``array`` - array elements
init_with : value to initialize the column with
"""
tab = table(msname, readonly=False)
if colname in tab.colnames():
print("Column already exists")
return "exists"
print("Attempting to add %s column to %s" % (colname, msname))
valuetype = valuetype or "complex"
if coldesc:
data_desc = coldesc
shape = coldesc["shape"]
elif shape:
data_desc = maketabdesc(makearrcoldesc(colname,
init_with,
shape=shape,
valuetype=valuetype))
elif valuetype == "scalar":
data_desc = maketabdesc(makearrcoldesc(colname,
init_with,
valuetype=valuetype))
elif clone:
element = tab.getcell(clone, 0)
try:
shape = element.shape
data_desc = maketabdesc(makearrcoldesc(colname,
element.flatten()[0],
shape=shape,
valuetype=valuetype))
except AttributeError:
shape = []
data_desc = maketabdesc(makearrcoldesc(colname,
element,
valuetype=valuetype))
colinfo = [data_desc, coldmi] if coldmi else [data_desc]
tab.addcols(*colinfo)
print("Column added successfully.")
if init_with is None:
tab.close()
return "added"
else:
spwids = set(tab.getcol("DATA_DESC_ID"))
for spw in spwids:
print("Initializing column {0}. DDID is {1}".format(colname, spw))
tab_spw = tab.query("DATA_DESC_ID=={0:d}".format(spw))
nrows = tab_spw.nrows()
rowchunk = rowchunk or nrows/10
dshape = [0] + [a for a in shape]
for row0 in range(0, nrows, rowchunk):
nr = min(rowchunk, nrows-row0)
dshape[0] = nr
print("Wrtiting to column %s (rows %d to %d)" %
(colname, row0, row0+nr-1))
dtype = init_with.dtype
tab_spw.putcol(colname,
np.ones(dshape, dtype=dtype) * init_with,
row0, nr)
tab_spw.close()
tab.close()
def sumcols(msname, col1=None, col2=None, outcol=None, cols=None,
subtract=False):
"""
Add col1 to col2, or sum columns in "cols" list.
Parameters
----------
subtract : bool
Subtract ``col2`` from ``col1``
"""
tab = table(msname, readonly=False)
if outcol not in tab.colnames():
print("outcol {0:s} does not exist, will add it first.".format(outcol))
addcol(msname, outcol, clone=col1 or cols[0])
spws = set(tab.getcol("DATA_DESC_ID"))
for spw in spws:
tab_spw = tab.query("DATA_DESC_ID=={0:d}".format(spw))
nrows = tab_spw.nrows()
rowchunk = nrows//10 if nrows > 10000 else nrows
for row0 in range(0, nrows, rowchunk):
nr = min(rowchunk, nrows-row0)
print("Wrtiting to column %s (rows %d to %d)" %
(outcol, row0, row0+nr-1))
if subtract:
data = (tab_spw.getcol(col1, row0, nr) -
tab_spw.getcol(col2, row0, nr))
else:
cols = cols or [col1, col2]
data = 0
for col in cols:
data += tab.getcol(col, row0, nr)
tab_spw.putcol(outcol, data, row0, nr)
tab_spw.close()
tab.close()
def copycol(msname, fromcol, tocol):
"""
Copy data from one column to another
"""
tab = table(msname, readonly=False)
if tocol not in tab.colnames():
addcol(msname, tocol, clone=fromcol)
spws = set(tab.getcol("DATA_DESC_ID"))
for spw in spws:
tab_spw = tab.query("DATA_DESC_ID=={0:d}".format(spw))
nrows = tab_spw.nrows()
rowchunk = nrows//10 if nrows > 5000 else nrows
for row0 in range(0, nrows, rowchunk):
nr = min(rowchunk, nrows-row0)
data = tab_spw.getcol(fromcol, row0, nr)
tab_spw.putcol(tocol, data, row0, nr)
tab_spw.close()
tab.close()
def calc_vis_noise(msname, sefd, spw_id=0):
"""
Calculate the nominal per-visibility noise
"""
tab = table(msname)
spwtab = table(msname + "/SPECTRAL_WINDOW")
freq0 = spwtab.getcol("CHAN_FREQ")[spw_id, 0]
wavelength = 300e+6/freq0
bw = spwtab.getcol("CHAN_WIDTH")[spw_id, 0]
dt = tab.getcol("EXPOSURE", 0, 1)[0]
dtf = (tab.getcol("TIME", tab.nrows()-1, 1)-tab.getcol("TIME", 0, 1))[0]
tab.close()
spwtab.close()
print("%s: frequency %.2f MHz (lambda=%.2fm)" %
(msname, freq0/1e6, wavelength))
print("%s: bandwidth %.2g kHz, %.2fs integration, %.2fh synthesis" %
(bw*1e-3, dt, dtf/3600))
noise = sefd / np.sqrt(abs(2*bw*dt))
print("SEFD of %.2f Jy gives per-visibility noise of %.2f mJy" %
(sefd, noise*1000))
return noise
def addnoise(msname, column="MODEL_DATA",
noise=0, sefd=551,
rowchunk=None,
addToCol=None,
spw_id=None):
"""
Add Gaussian noise to MS, given a stdandard deviation (noise).
This noise can be also be calculated given SEFD value
"""
tab = table(msname, readonly=False)
multi_chan_noise = False
if hasattr(noise, "__iter__"):
multi_chan_noise = True
elif hasattr(sefd, "__iter__"):
multi_chan_noise = True
else:
noise = noise or calc_vis_noise(msname, sefd=sefd,
spw_id=spw_id or 0)
spws = set(tab.getcol("DATA_DESC_ID"))
for spw in spws:
tab_spw = tab.query("DATA_DESC_ID=={0:d}".format(spw))
nrows = tab_spw.nrows()
nchan, ncor = tab_spw.getcell("DATA", 0).shape
rowchunk = rowchunk or nrows/10
for row0 in range(0, nrows, rowchunk):
nr = min(rowchunk, nrows-row0)
data = (np.random.randn(nr, nchan, ncor) +
1j*np.random.randn(nr, nchan, ncor))
if multi_chan_noise:
noise = noise[np.newaxis, :, np.newaxis]
data *= noise
if addToCol:
data += tab_spw.getcol(addToCol, row0, nr)
print("%s + noise --> %s (rows %d to %d)" %
(addToCol, column, row0, row0+nr-1))
else:
print("Adding noise to column %s (rows %d to %d)" %
(column, row0, row0+nr-1))
tab_spw.putcol(column, data, row0, nr)
tab_spw.close()
tab.close()
def cmd_info(args):
"""
Sub-command: "info", show MS basic information
"""
msname = args.msname
info = getinfo(msname)
pprint(info)
def main():
parser = argparse.ArgumentParser(
description="CASA MeasurementSet (MS) manipulation utilities")
subparsers = parser.add_subparsers(dest="subparser_name",
title="sub-commands",
help="additional help")
# sub-command: "info"
parser_info = subparsers.add_parser("info", help="show MS basic info")
parser_info.add_argument("msname", help="MS name")
parser_info.set_defaults(func=cmd_info)
args = parser.parse_args()
args.func(args)
if __name__ == "__main__":
main()
|