aboutsummaryrefslogtreecommitdiffstats
path: root/astro/oskar/fits2skymodel.py
blob: 324ee2ac45996c05f9bf24c942fa7b7d2ee5d64f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#!/usr/bin/env python3
#
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT License
#

"""
Convert a FITS image to OSKAR sky model for simulation usage.

NOTE
----
The OSKAR sky model consists of all the valid (>threshold) pixels
from the given image (slice), and fluxes are given in unit [Jy],
therefore, the input image should be converted from brightness
temperature [K] to unit [Jy/pixel].

References
----------
[1] GitHub: OxfordSKA/OSKAR
    https://github.com/OxfordSKA/OSKAR
[2] OSKAR - Sky Model
    http://www.oerc.ox.ac.uk/~ska/oskar2/OSKAR-Sky-Model.pdf
[3] OSKAR - Settings
    http://www.oerc.ox.ac.uk/~ska/oskar2/OSKAR-Settings.pdf
"""

import os
import sys
import argparse
import logging
from datetime import datetime

import numpy as np
import astropy.io.fits as fits
import astropy.units as au
from astropy.wcs import WCS


logging.basicConfig(level=logging.INFO,
                    format="%(asctime)s [%(levelname)s] %(message)s",
                    datefmt="%H:%M:%S")
logger = logging.getLogger(os.path.basename(sys.argv[0]))


class SkyModel:
    """
    OSKAR sky model.

    Parameters
    ----------
    image : 2D float `~numpy.ndarray`
        Input image array; unit [K] (brightness temperature)
    freq : float
        Frequency of the input image slice; unit [MHz]
    pixelsize : float
        Pixel size of the input image;
        Unit: [arcsec]
    ra0, dec0 : float
        The coordinate of the image center; unit [deg]
    minvalue : float, optional
        The minimum threshold for the image values
    mask : 2D bool `~numpy.ndarray`, optional
        Use this mask to select the sources of the output sky model,
        instead of the above ``minvalue``.
        NOTE: this overwrite the above ``minvalue`` if provided.
    projection : str, optional
        The WCS projection for the image;
        Default: "CAR" (Cartesian)
        TODO: support "SIN" etc.
    """
    def __init__(self, image, freq, pixelsize, ra0, dec0,
                 minvalue=1e-4, mask=None, projection="CAR"):
        self.image = image  # [K] (brightness temperature)
        self.freq = freq  # [MHz]
        self.pixelsize = pixelsize  # [arcsec]
        self.ra0 = ra0  # [deg]
        self.dec0 = dec0  # [deg]
        self.minvalue = minvalue
        self.mask = mask
        self.projection = projection
        logger.info("SkyModel: Loaded image @ %.2f [MHz], " % freq +
                    "%.1f [arcsec/pixel]" % pixelsize)
        logger.info("Image size: %dx%d" % self.shape)
        logger.info("FoV size: %.2fx%.2f [deg^2]" % self.fov)

    @property
    def shape(self):
        """
        FITS image (width, height)
        """
        width, height = list(reversed(self.image.shape))[:2]
        return (width, height)

    @property
    def fov(self):
        """
        FITS image FoV size: (width, height) [deg]
        """
        width, height = self.shape
        return (width*self.pixelsize/3600, height*self.pixelsize/3600)

    @property
    def wcs(self):
        """
        WCS for the given image slice.
        """
        shape = self.image.shape
        delta = self.pixelsize / 3600.0  # [arcsec] -> [deg]
        wcs_ = WCS(naxis=2)
        wcs_.wcs.ctype = ["RA---"+self.projection, "DEC--"+self.projection]
        wcs_.wcs.crval = np.array([self.ra0, self.dec0])
        wcs_.wcs.crpix = np.array([shape[1], shape[0]]) / 2.0 + 1
        wcs_.wcs.cdelt = np.array([delta, delta])
        return wcs_

    @property
    def fits_header(self):
        header = self.wcs.to_header()
        header["BUNIT"] = ("Jy/pixel", "Brightness unit")
        header["FREQ"] = (self.freq, "Frequency [MHz]")
        header["RA0"] = (self.ra0, "Center R.A. [deg]")
        header["DEC0"] = (self.dec0, "Center Dec. [deg]")
        header["PixSize"] = (self.pixelsize, "Pixel size [arcsec]")
        return header

    @property
    def factor_K2JyPixel(self):
        """
        Conversion factor to convert brightness unit from 'K' to 'Jy/pixel'
        """
        pixarea = (self.pixelsize * au.arcsec) ** 2
        freq = self.freq * au.MHz
        equiv = au.brightness_temperature(pixarea, freq)
        factor = au.K.to(au.Jy, equivalencies=equiv)
        return factor

    @property
    def ra_dec(self):
        """
        Calculate the (ra, dec) of each image pixel using the above WCS.

        NOTE: axis ordering difference between numpy array and FITS
        """
        shape = self.image.shape
        wcs = self.wcs
        x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]))
        pix = np.column_stack([x.flatten(), y.flatten()])
        world = wcs.wcs_pix2world(pix, 0)
        ra = world[:, 0].reshape(shape)
        dec = world[:, 1].reshape(shape)
        return (ra, dec)

    @property
    def sky(self):
        """
        OSKAR sky model array converted from the input image.

        Columns
        -------
        ra : (J2000) right ascension (deg)
        dec : (J2000) declination (deg)
        flux : source (Stokes I) flux density (Jy)
        """
        if self.mask is None:
            self.mask = self.image >= self.minvalue
            logger.info("Use minimum threshold to determine output sky")
        else:
            logger.info("Use provided mask to determine output sky")
        idx = self.mask.flatten()
        ra, dec = self.ra_dec
        ra = ra.flatten()[idx]
        dec = dec.flatten()[idx]
        flux = self.image.flatten()[idx] * self.factor_K2JyPixel
        sky_ = np.column_stack([ra, dec, flux])
        return sky_

    def write_sky_model(self, outfile, clobber=False):
        """
        Write the converted sky model for simulation.
        """
        if os.path.exists(outfile) and (not clobber):
            raise OSError("OSKAR sky model file already exists: %s" % outfile)
        sky = self.sky
        counts = sky.shape[0]
        percent = 100 * counts / self.image.size
        logger.info("Source counts: %d (%.1f%%)" % (counts, percent))
        header = ("Frequency = %.3f [MHz]\n" % self.freq +
                  "Pixel size = %.2f [arcsec]\n" % self.pixelsize +
                  "RA0 = %.4f [deg]\n" % self.ra0 +
                  "Dec0 = %.4f [deg]\n" % self.dec0 +
                  "Minimum value = %.4e [K]\n" % self.minvalue +
                  "Source counts = %d (%.1f%%)\n\n" % (counts, percent) +
                  "R.A.[deg]    Dec.[deg]    flux[Jy]")
        np.savetxt(outfile, sky, fmt='%.10e, %.10e, %.10e', header=header)
        logger.info("Wrote OSKAR sky model to file: %s" % outfile)

    def write_fits(self, outfile, oldheader=None, clobber=False):
        if os.path.exists(outfile) and (not clobber):
            raise OSError("Sky FITS already exists: %s" % outfile)
        if oldheader is not None:
            header = oldheader
            header.extend(self.fits_header, update=True)
        else:
            header = self.fits_header
        header.add_history(datetime.now().isoformat())
        header.add_history(" ".join(sys.argv))
        image = self.image
        image[image < self.minvalue] = np.nan
        image *= self.factor_K2JyPixel
        hdu = fits.PrimaryHDU(data=image, header=header)
        try:
            hdu.writeto(outfile, overwrite=True)
        except TypeError:
            hdu.writeto(outfile, clobber=True)  # old astropy versions
        logger.info("Wrote FITS image of sky model to file: %s" % outfile)

    def write_mask(self, outfile, clobber=False):
        if os.path.exists(outfile) and (not clobber):
            raise OSError("Sky mask already exists: %s" % outfile)
        header = self.fits_header
        header.add_history(datetime.now().isoformat())
        header.add_history(" ".join(sys.argv))
        hdu = fits.PrimaryHDU(data=self.mask.astype(np.int16),
                              header=header)
        try:
            hdu.writeto(outfile, overwrite=True)
        except TypeError:
            hdu.writeto(outfile, clobber=True)  # old astropy versions
        logger.info("Wrote mask of sky model to file: %s" % outfile)


def main():
    parser = argparse.ArgumentParser(
        description="Convert FITS image to OSKAR sky model")
    parser.add_argument("-C", "--clobber", dest="clobber",
                        action="store_true",
                        help="overwrite existing file")
    parser.add_argument("-r", "--ra0", dest="ra0", type=float,
                        default=0.0,
                        help="[deg] R.A. of the image center (default: 0)")
    parser.add_argument("-d", "--dec0", dest="dec0", type=float,
                        default=-27.0,
                        help="[deg] Dec. of the image center (default: -27)")
    parser.add_argument("-p", "--pixel-size", dest="pixelsize", type=float,
                        help="image pixel size [arcsec]; " +
                        "(default: obtain from the FITS header 'PixSize')")
    parser.add_argument("-f", "--freq", dest="freq", type=float,
                        help="frequency [MHz] the image measured; " +
                        "(default: obtain from the FITS header 'FREQ')")
    exgrp = parser.add_mutually_exclusive_group()
    exgrp.add_argument("-m", "--min-value", dest="minvalue", type=float,
                       help="minimum threshold to the output sky model; " +
                       "unit: [K]; (default: 1e-4, i.e., 0.1 mK)")
    exgrp.add_argument("-M", "--min-peak-fraction", dest="minpfrac",
                       type=float,
                       help="minimum threshold determined as the fraction " +
                       "the peak value to the output sky model")
    exgrp.add_argument("--mask", dest="mask",
                       help="use a mask to determine the output sky model")
    #
    parser.add_argument("-F", "--osm-fits", dest="osmfits",
                        action="store_true",
                        help="save a FITS version of the converted sky model")
    parser.add_argument("-o", "--outdir", dest="outdir",
                        help="output directory for sky model files " +
                        "(default: current working directory)")
    parser.add_argument("--create-mask", dest="create_mask",
                        help="create a FITS mask for the output sky model")
    parser.add_argument("infile", help="input FITS image")
    parser.add_argument("outfile", nargs="?",
                        help="output OSKAR sky model (default: " +
                        "save basename as the input FITS image)")
    args = parser.parse_args()

    if args.outfile:
        outfile = args.outfile
    else:
        outfile = os.path.splitext(os.path.basename(args.infile))[0] + ".osm"
        if args.outdir:
            outfile = os.path.join(args.outdir, outfile)
            if not os.path.exists(args.outdir):
                os.mkdir(args.outdir)

    with fits.open(args.infile) as f:
        image = f[0].data.astype(np.float32)
        header = f[0].header.copy(strip=True)
    logger.info("Read input FITS image: %s" % args.infile)

    # Check data unit
    unit = header.get("BUNIT")
    if unit is None:
        logger.warning("Input FITS file of unknown data unit! " +
                       "Assuming [K] (kelvin)!")
    elif unit.upper() not in ["K", "KELVIN"]:
        logger.error("Input FITS file of wrong data unit: %s" % unit)

    freq = args.freq if args.freq else header["FREQ"]  # [MHz]
    if args.pixelsize:
        pixelsize = args.pixelsize  # [arcsec]
    else:
        pixelsize = header["PixSize"]  # [arcsec]
    logger.info("Frequency: %.2f [MHz]" % freq)
    logger.info("Pixel size: %.2f [arcsec]" % pixelsize)
    minvalue = 1e-4  # i.e., 0.1 [mK]
    mask = None
    if args.minvalue:
        minvalue = args.minvalue
    if args.minpfrac:
        minvalue = args.minpfrac * image.max()
    if args.mask:
        mask = fits.open(args.mask)[0].data.astype(np.bool)
    logger.info("Minimum threshold: %g [K]" % minvalue)
    skymodel = SkyModel(image=image, freq=freq, ra0=args.ra0, dec0=args.dec0,
                        pixelsize=pixelsize, minvalue=minvalue, mask=mask)
    logger.info("Conversion [K] -> [Jy/pixel]: %g" % skymodel.factor_K2JyPixel)
    skymodel.write_sky_model(outfile, clobber=args.clobber)
    if args.osmfits:
        outfits = outfile + ".fits"
        skymodel.write_fits(outfits, oldheader=header, clobber=args.clobber)
    if args.create_mask:
        skymodel.write_mask(args.create_mask, clobber=args.clobber)


if __name__ == "__main__":
    main()