1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
#!/usr/bin/env python3
#
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT License
#
"""
Convert a FITS image to OSKAR sky model for simulation usage.
NOTE
----
The OSKAR sky model consists of all the valid (>threshold) pixels
from the given image (slice), and fluxes are given in unit [Jy],
therefore, the input image should be converted from brightness
temperature [K] to unit [Jy/pixel].
References
----------
[1] GitHub: OxfordSKA/OSKAR
https://github.com/OxfordSKA/OSKAR
[2] OSKAR - Sky Model
http://www.oerc.ox.ac.uk/~ska/oskar2/OSKAR-Sky-Model.pdf
[3] OSKAR - Settings
http://www.oerc.ox.ac.uk/~ska/oskar2/OSKAR-Settings.pdf
"""
import os
import sys
import argparse
import logging
from datetime import datetime
import numpy as np
import astropy.io.fits as fits
import astropy.constants as ac
from astropy.wcs import WCS
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(os.path.basename(sys.argv[0]))
class SkyModel:
"""
OSKAR sky model.
Parameters
----------
image : 2D float `~numpy.ndarray`
Input image array; unit [K] (brightness temperature)
freq : float
Frequency of the input image slice; unit [MHz]
pixsize : float
Pixel size of the input image; unit [arcmin]
ra0, dec0 : float
The coordinate of the image center; unit [deg]
minvalue : float, optional
The minimum threshold for the image values
projection : str, optional
The WCS projection for the image; default "TAN"
TODO: support "SIN" etc.
"""
def __init__(self, image, freq, pixsize, ra0, dec0,
minvalue=1e-4, projection="TAN"):
self.image = image # K (brightness temperature)
self.freq = freq # MHz
self.pixsize = pixsize # arcmin
self.ra0 = ra0 # deg
self.dec0 = dec0 # deg
self.minvalue = minvalue
self.projection = projection
logger.info("SkyModel: Loaded image @ %.2f [MHz]" % freq)
@property
def wcs(self):
"""
WCS for the given image slice.
"""
shape = self.image.shape
delta = self.pixsize / 60.0 # deg
wcs_ = WCS(naxis=2)
wcs_.wcs.ctype = ["RA---"+self.projection, "DEC--"+self.projection]
wcs_.wcs.crval = np.array([self.ra0, self.dec0])
wcs_.wcs.crpix = np.array([shape[1], shape[0]]) / 2.0 + 1
wcs_.wcs.cdelt = np.array([delta, delta])
return wcs_
@property
def fits_header(self):
header = self.wcs.to_header()
header["BUNIT"] = ("Jy/pixel", "Brightness unit")
header["FREQ"] = (self.freq, "Frequency [MHz]")
header["RA0"] = (self.ra0, "Center R.A. [deg]")
header["DEC0"] = (self.dec0, "Center Dec. [deg]")
header["PIXSIZE"] = (self.pixsize, "Pixel size [arcmin]")
return header
@property
def factor_K2JyPixel(self):
"""
Conversion factor to convert brightness unit from 'K' to 'Jy/pixel'
http://www.iram.fr/IRAMFR/IS/IS2002/html_1/node187.html
"""
pixarea = np.deg2rad(self.pixsize/60.0) ** 2 # [sr]
kB = ac.k_B.si.value # Boltzmann constant [J/K]
c0 = ac.c.si.value # speed of light in vacuum [m/s]
freqHz = self.freq * 1e6 # [Hz]
factor = 2*kB * 1.0e26 * pixarea * (freqHz/c0)**2
return factor
@property
def ra_dec(self):
"""
Calculate the (ra, dec) of each image pixel using the above WCS.
NOTE: axis ordering difference between numpy array and FITS
"""
shape = self.image.shape
wcs = self.wcs
x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]))
pix = np.column_stack([x.flatten(), y.flatten()])
world = wcs.wcs_pix2world(pix, 0)
ra = world[:, 0].reshape(shape)
dec = world[:, 1].reshape(shape)
return (ra, dec)
@property
def sky(self):
"""
OSKAR sky model array converted from the input image.
Columns
-------
ra : (J2000) right ascension (deg)
dec : (J2000) declination (deg)
flux : source (Stokes I) flux density (Jy)
"""
idx = self.image.flatten() >= self.minvalue
ra, dec = self.ra_dec
ra = ra.flatten()[idx]
dec = dec.flatten()[idx]
flux = self.image.flatten()[idx] * self.factor_K2JyPixel
sky_ = np.column_stack([ra, dec, flux])
return sky_
def write_sky_model(self, outfile, clobber=False):
"""
Write the converted sky model for simulation.
"""
if os.path.exists(outfile) and (not clobber):
raise OSError("OSKAR sky model file already exists: " % outfile)
sky = self.sky
nsources = sky.shape[0]
logger.info("Number of sources: %d" % nsources)
header = ("Frequency = %.3f [MHz]\n" % self.freq +
"Pixel size = %.2f [arcmin]\n" % self.pixsize +
"RA0 = %.4f [deg]\n" % self.ra0 +
"Dec0 = %.4f [deg]\n" % self.dec0 +
"Number of sources = %d\n\n" % len(sky) +
"R.A.[deg] Dec.[deg] flux[Jy]")
np.savetxt(outfile, sky, fmt='%.10e, %.10e, %.10e', header=header)
logger.info("Wrote OSKAR sky model to file: %s" % outfile)
def write_fits(self, outfile, oldheader=None, clobber=False):
if os.path.exists(outfile) and (not clobber):
raise OSError("Sky FITS already exists: " % outfile)
if oldheader is not None:
header = oldheader
header.extend(self.fits_header, update=True)
else:
header = self.fits_header
header.add_history(datetime.now().isoformat())
header.add_history(" ".join(sys.argv))
image = self.image
image[image < self.minvalue] = np.nan
image *= self.factor_K2JyPixel
hdu = fits.PrimaryHDU(data=image, header=header)
try:
hdu.writeto(outfile, overwrite=True)
except TypeError:
hdu.writeto(outfile, clobber=True) # old astropy versions
logger.info("Wrote FITS image of sky model to file: %s" % outfile)
def main():
parser = argparse.ArgumentParser(
description="Convert FITS image to OSKAR sky model")
parser.add_argument("-C", "--clobber", dest="clobber",
action="store_true",
help="overwrite existing file")
parser.add_argument("-r", "--ra0", dest="ra0", type=float, required=True,
help="R.A. of the image center")
parser.add_argument("-d", "--dec0", dest="dec0", type=float, required=True,
help="Dec. of the image center")
parser.add_argument("-p", "--pix-size", dest="pixsize", type=float,
help="image pixel size [arcmin]; " +
"(default: obtain from the FITS header 'PIXSIZE')")
parser.add_argument("-f", "--freq", dest="freq", type=float,
help="frequency [MHz] the image measured; " +
"(default: obtain from the FITS header 'FREQ')")
exgrp = parser.add_mutually_exclusive_group()
exgrp.add_argument("-m", "--min-value", dest="minvalue", type=float,
help="minimum threshold to the output sky model " +
"(default: 1e-4, i.e., 0.1 mK)")
exgrp.add_argument("-M", "--min-peak-fraction", dest="minpfrac",
type=float,
help="minimum threshold determined as the fraction " +
"the peak value to the output sky model")
#
parser.add_argument("-F", "--osm-fits", dest="osmfits",
action="store_true",
help="save a FITS version of the converted sky model")
parser.add_argument("-o", "--outdir", dest="outdir",
help="output directory for sky model files")
parser.add_argument("infile", help="input FITS image")
parser.add_argument("outfile", nargs="?",
help="output OSKAR sky model (default: " +
"save basename as the input FITS image)")
args = parser.parse_args()
if args.outfile:
outfile = args.outfile
else:
outfile = os.path.splitext(os.path.basename(args.infile))[0] + ".osm"
if args.outdir:
outfile = os.path.join(args.outdir, outfile)
if not os.path.exists(args.outdir):
os.mkdir(args.outdir)
with fits.open(args.infile) as f:
image = f[0].data
header = f[0].header
logger.info("Read image slice: %s" % args.infile)
freq = args.freq if args.freq else header["FREQ"] # [MHz]
pixsize = args.pixsize if args.pixsize else header["PIXSIZE"] # [arcmin]
logger.info("Frequency: %.2f [MHz]" % freq)
logger.info("Pixel size: %.2f [arcmin]" % pixsize)
minvalue = 1e-4 # i.e., 0.1 [mK]
if args.minvalue:
minvalue = args.minvalue
if args.minpfrac:
minvalue = args.minpfrac * image.max()
logger.info("Minimum threshold: %g [K]" % minvalue)
skymodel = SkyModel(image=image, freq=freq, ra0=args.ra0, dec0=args.dec0,
pixsize=pixsize, minvalue=minvalue)
logger.info("Conversion [K] -> [Jy/pixel]: %g" % skymodel.factor_K2JyPixel)
skymodel.write_sky_model(outfile, clobber=args.clobber)
if args.osmfits:
outfits = outfile + ".fits"
skymodel.write_fits(outfits, oldheader=header, clobber=args.clobber)
if __name__ == "__main__":
main()
|