1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
#!/usr/bin/env python3
#
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
#
"""
Convert the image (e.g., by WSClean) from units [Jy/beam] to [K]
by taking into account the telescope's beam size.
"""
import os
import sys
import argparse
import numpy as np
from astropy.io import fits
import astropy.units as au
def open_image(infile):
"""
Open the FITS image and return its header and data, but requiring
the input image has only ONE frequency.
The input FITS image may have following dimensions:
* NAXIS=2: [Y, X]
* NAXIS=3: [FREQ=1, Y, X]
* NAXIS=4: [STOKES, FREQ=1, Y, X]
"""
with fits.open(infile) as f:
header = f[0].header
data = f[0].data
if ((data.ndim == 3 and data.shape[0] != 1) or
(data.ndim == 4 and data.shape[1] != 1)):
# NAXIS=3: [FREQ!=1, Y, X]
# NAXIS=4: [STOKES, FREQ!=1, Y, X]
raise ValueError("input file '{0}' has invalid dimensions: {1}".format(
infile, data.shape))
print("Read in FITS image from: %s" % infile)
return (header, data)
def calc_beam_size(header):
"""
Calculate the beam/PSF size using the 'WSCNORMF' keyword recorded by
the WSClean imager, which applies to the natural-weighted image, and
is more accurate than the fitted beam (stored as 'BMAJ' and 'BMIN'.)
"""
try:
weight = header["WSCWEIGH"]
normf = header["WSCNORMF"]
print("WSCWEIGH: %s" % weight)
print("WSCNORMF: %.1f" % normf)
except KeyError:
raise RuntimeError("NO necessary WSC* keyword; switch to " +
"--use-fitted-beam instead")
if weight.upper() != "NATURAL":
print("WARNING: weighting scheme is '%s' != natural!" % weight)
width = header["NAXIS1"]
height = header["NAXIS2"]
pixelsize = np.abs(header["CDELT1"]) * 3600 # [arcsec]
print("Image: %dx%d, %.1f [arcsec/pixel]" % (width, height, pixelsize))
beam_size = (width*height * pixelsize**2) / normf
return beam_size
def main():
parser = argparse.ArgumentParser(
description="Convert WSClean created image from [Jy/beam] to [K]",
epilog=("By default the 'WSCNORMF' keyword is taken to derive " +
"the beam/PSF size for natural-weighted image created " +
"by WSClean, which is more accurate than the fitted " +
"beam stored as 'BMAJ' and 'BMIN'."))
parser.add_argument("-C", "--clobber", dest="clobber",
action="store_true",
help="overwrite existing output file")
parser.add_argument("-B", "--use-fitted-beam", dest="use_fitted_beam",
action="store_true",
help="use the fitted beam (i.e., BMAJ and BMIN) " +
"or the beam size specified by --beam-size.")
parser.add_argument("-b", "--beam-size", dest="beam_size", type=float,
help="instrumental beam size [arcsec^2] " +
"(=pi*bmajor*bminor/4/ln(2)) (default: obtain " +
"from the header BMAJ and BMIN keywords); this " +
"argument also implies --use-fitted-beam")
parser.add_argument("-f", "--frequency", dest="frequency",
help="frequency [MHz] of the input image (NOTE: " +
"required if failed to obtain from the header)")
parser.add_argument("infile",
help="input FITS image file (NOTE: only single " +
"frequency supported)")
parser.add_argument("outfile",
help="output filename of the converted image")
args = parser.parse_args()
header, data = open_image(args.infile)
bunit = header["BUNIT"]
if bunit.upper() == "JY/BEAM":
unit = "Jy"
elif bunit.upper() == "MJY/BEAM":
unit = "mJy"
else:
raise ValueError("input image has wrong unit: %s" % bunit)
print("Data unit: %s/beam" % unit)
if args.frequency:
freq = args.frequency # [MHz]
else:
try:
freq = header["FREQ"] # [MHz]
except KeyError:
if header.get("CTYPE3", "").upper() == "FREQ":
freq = header["CRVAL3"] / 1e6 # [MHz]
else:
raise ValueError("--frequency required")
print("Frequency: %.2f [MHz]" % freq)
# Elliptical Gaussian beam (full width at half power; FWHP)
if args.beam_size:
beam_size = args.beam_size
elif args.use_fitted_beam:
bmajor = header["BMAJ"] * 3600 # [arcsec]
bminor = header["BMIN"] * 3600 # [arcsec]
beam_size = np.pi * bmajor*bminor / (4*np.log(2)) # [arcsec^2]
print("Beam: (%.2f, %.2f) [arcsec]" % (bmajor, bminor))
else:
# Derive beam size using 'WSCNORMF' keyword
beam_size = calc_beam_size(header)
print("Beam size: %.2f [arcsec^2]" % beam_size)
equiv = au.brightness_temperature(beam_size*au.arcsec**2, freq*au.MHz)
jybeam2k = au.Unit(unit).to(au.K, equivalencies=equiv)
print("Conversion factor [%s/beam] -> [K]: %g" % (unit, jybeam2k))
header["BUNIT"] = ("K", "Kelvin; converted from [%s/beam]" % unit)
header["JyBeam2K"] = (jybeam2k,
"[%s/beam] -> [K] conversion factor" % unit)
header["FREQ"] = (freq, "[MHz] frequency")
header.add_history(" ".join(sys.argv))
data = data * jybeam2k
if os.path.exists(args.outfile):
if args.clobber:
os.remove(args.outfile)
else:
raise OSError("output file already existed: %s" % args.outfile)
hdu = fits.PrimaryHDU(data=data, header=header)
hdu.writeto(args.outfile)
print("Converted image wrote to: %s" % args.outfile)
if __name__ == "__main__":
main()
|