aboutsummaryrefslogtreecommitdiffstats
path: root/astro/oskar/runOSKAR.py
blob: fa0ce2d0afd36833074ef16dce621f5e3eb54107 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
#!/usr/bin/env python3
#
# Copyright (c) 2017 Weitian LI <liweitianux@live.com>
# MIT license
#
# 2017-04-07
#

"""
Run OSKAR to simulate the visibilities from the sky model specified
by a FITS image.


Credits
-------
[1] GitHub: OxfordSKA/OSKAR
    https://github.com/OxfordSKA/OSKAR
[2] GitHub: OxfordSKA/EoR - Emma_files/sim_tidy.py
    https://github.com/OxfordSKA/EoR/blob/master/Emma_files/sim_tidy.py
"""

import os
import sys
import subprocess
import configparser
import argparse
import logging

import numpy as np
import astropy.io.fits as fits
import astropy.units as au
import astropy.constants as ac
from astropy.wcs import WCS


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(os.path.basename(sys.argv[0]))


class Settings:
    """
    OSKAR settings manager.
    """
    def __init__(self, infile):
        self.infile = infile
        self.config = configparser.ConfigParser(interpolation=None)
        self.config.read(infile)
        logger.info("Read in configuration file: %s" % infile)
        self.init_oskar_settings()
        self.update_oskar_settings(self.config)

    @property
    def my_settings(self):
        return self.config["my"]

    @property
    def dryrun(self):
        return self.my_settings.getboolean("dryrun", fallback=False)

    @property
    def clobber(self):
        return self.my_settings.getboolean("clobber", fallback=False)

    @property
    def quiet(self):
        return self.my_settings.getboolean("quiet", fallback=False)

    @property
    def oskar_bin(self):
        oskar = self.my_settings.get("oskar_bin",
                                     fallback="oskar_sim_interferometer")
        return os.path.expanduser(oskar)

    @property
    def output_settings_fn(self):
        """
        String format pattern for the output OSKAR settings file.
        """
        default = "settings/sim_interferometer_{freq:.2f}.ini"
        return self.my_settings.get("output_settings_fn", fallback=default)

    @property
    def output_skymodel_fn(self):
        """
        String format pattern for the output OSKAR sky model file.
        """
        default = "skymodel/skymodel_{freq:.2f}.txt"
        return self.my_settings.get("output_skymodel_fn", fallback=default)

    @property
    def output_skyfits_fn(self):
        """
        String format pattern for the output FITS slice of the sky model.
        """
        default = "skymodel/skymodel_{freq:.2f}.fits"
        return self.my_settings.get("output_skyfits_fn", fallback=default)

    @property
    def output_ms_fn(self):
        """
        String format pattern for the output simulated visibility
        data in MeasurementSet format.
        """
        default = "visibility/visibility_{freq:.2f}.ms"
        return self.my_settings.get("output_ms_fn", fallback=default)

    @property
    def output_vis_fn(self):
        """
        String format pattern for the output simulated visibility
        data in OSKAR binary format.
        """
        default = "visibility/visibility_{freq:.2f}.oskar"
        return self.my_settings.get("output_vis_fn", fallback=default)

    @property
    def telescope_model(self):
        """
        Telescope model used for visibility simulations.
        """
        return self.my_settings["telescope_model"]

    @property
    def input_cube(self):
        """
        Input FITS spectral cube.
        """
        return self.my_settings["input_cube"]

    @property
    def image_size(self):
        """
        Width/X and height/Y of the input FITS image (unit: pixel)
        """
        size = self.my_settings["image_size"].split(",")
        return (int(size[0]), int(size[1]))

    @property
    def image_pixsize(self):
        """
        Pixel size of the input FITS image (unit: arcsec)
        """
        return self.my_settings.getfloat("image_pixsize")

    @property
    def frequency(self):
        """
        Frequency of the input image. (unit: MHz)

        NOTE: required if the above input FITS file is not a cube, but
              a 2D image.
        """
        return self.my_settings.getfloat("frequency")

    @property
    def bandwidth(self):
        """
        Bandwidth of the input image. (unit: MHz)
        """
        return self.my_settings.getfloat("bandwidth")

    @property
    def ra0(self):
        """
        R.A. of the center of the input sky field.
        unit: deg
        """
        return self.my_settings.getfloat("ra0", fallback=0.0)

    @property
    def dec0(self):
        """
        Dec. of the center of the input sky field.
        unit: deg
        """
        return self.my_settings.getfloat("dec0", fallback=-27.0)

    @property
    def use_gpus(self):
        """
        Whether to GPUs
        """
        return self.my_settings.getboolean("use_gpus", fallback=False)

    @property
    def start_time(self):
        """
        Start time of the simulating observation
        """
        # This default time keeps 'EoR0' region above horizon for 12 hours.
        # SKA EoR0 region: (ra, dec) = (0, -27) [deg]
        default = "2000-01-01T03:30:00.000"
        return self.my_settings.getfloat("start_time", fallback=default)

    @property
    def obs_length(self):
        """
        Observation length of time (unit: s).
        """
        default = 12.0 * 3600  # 12 hours
        return self.my_settings.getfloat("obs_length", fallback=default)

    @property
    def obs_interval(self):
        """
        Observation interval providing the number of time steps in the
        output data (unit: s).
        """
        default = 10.0  # [s]
        return self.my_settings.getfloat("obs_interval", fallback=default)

    @property
    def time_average(self):
        """
        Correlator time-average duration to simulate time-averaging smearing
        (unit: s).
        """
        default = 10.0  # [s]
        return self.my_settings.getfloat("time_average", fallback=default)

    def init_oskar_settings(self):
        """
        Initialize a `ConfigParser` instance with the default settings
        for 'oskar_sim_interferometer'.
        """
        settings = configparser.ConfigParser()
        settings.read_dict({
            "General": {
                "app": "oskar_sim_interferometer",
            },
            "simulator": {
                "use_gpus": self.use_gpus,
                "max_sources_per_chunk": 65536,
                "double_precision": "true",
                "keep_log_file": "true",
            },
            "sky": {
                "advanced/apply_horizon_clip": "false",
            },
            "observation": {
                "phase_centre_ra_deg": self.ra0,
                "phase_centre_dec_deg": self.dec0,
                "start_time_utc": self.start_time,
                "length": self.obs_length,
                "num_time_steps":
                    int(np.ceil(self.obs_length/self.obs_interval)),
                "num_channels": 1,
            },
            "telescope": {
                "input_directory": self.telescope_model,
                "pol_mode": "Scalar",
                "normalise_beams_at_phase_centre": "true",
                "allow_station_beam_duplication": "true",
                "aperture_array/array_pattern/enable": "true",
                "aperture_array/element_pattern/functional_type": "Dipole",
                "aperture_array/element_pattern/dipole_length": 0.5,
                "aperture_array/element_pattern/dipole_length_units":
                    "Wavelengths",
                "station_type": "Aperture array",
            },
            "interferometer": {
                "channel_bandwidth_hz": self.bandwidth * 1e6,
                "time_average_sec": self.time_average,
                "uv_filter_min": "min",
                "uv_filter_max": "max",
                "uv_filter_units": "Wavelengths",
            }
        })
        self.oskar_settings = settings
        logger.info("Initialized 'oskar_settings'")

    def update_oskar_settings(self, config):
        """
        Update the OSKAR settings with the loaded user configurations.
        """
        for section in self.oskar_settings.sections():
            if section in config:
                for key, value in config[section].items():
                    self.oskar_settings[section][key] = value
                    logger.info("oskar_settings: [%s]%s = %s" % (
                        section, key, value))
        logger.info("Updated 'oskar_settings'")

    def write_oskar_settings(self, outfile, clobber=False):
        """
        Write the settings file for 'oskar_sim_interferometer'.
        """
        if os.path.exists(outfile) and (not clobber):
            raise OSError("oskar settings file already exists: " % outfile)
        with open(outfile, "w") as fp:
            # NOTE: OSKAR do NOT like space around '='
            self.oskar_settings.write(fp, space_around_delimiters=False)
        logger.info("Wrote oskar settings file: %s" % outfile)


class SpectralCube:
    """
    Manipulate the FITS spectral cube.

    NOTE: The FITS data as `numpy.ndarray` has the opposite index
          ordering, which likes the Fortran style, i.e., fastest
          changing axis last: data[frequency, y, x]
    """
    def __init__(self, infile):
        self.infile = infile
        with fits.open(infile) as hdulist:
            self.header = hdulist[0].header
            self.cube = hdulist[0].data
        self.wcs = WCS(self.header)
        logger.info("Loaded FITS spectral cube: %s" % infile)
        logger.info("Spectral cube: width=%d, height=%d" %
                    (self.width, self.height))
        if not self.is_cube:
            logger.warning("NOT a spectral cube!")
        else:
            logger.info("Number of frequencies: %d" % self.nfreq)

    @property
    def naxis(self):
        return self.header["NAXIS"]

    @property
    def is_cube(self):
        return self.naxis == 3

    @property
    def width(self):
        """
        Width of the image, i.e., X axis.
        """
        return self.header["NAXIS1"]

    @property
    def height(self):
        """
        Height of the image, i.e., Y axis.
        """
        return self.header["NAXIS2"]

    @property
    def nfreq(self):
        return self.header["NAXIS3"]

    @property
    def frequencies(self):
        """
        Frequencies of this cube. (unit: MHz)
        If the input file is not a cube, then return 'None'.
        """
        if not self.is_cube:
            logger.warning("Input FITS file is not a spectral cube: %s" %
                           self.infile)
            return None

        nfreq = self.nfreq
        pix = np.zeros(shape=(nfreq, self.naxis), dtype=np.int)
        pix[:, -1] = np.arange(nfreq)
        world = self.wcs.wcs_pix2world(pix, 0)
        freqMHz = world[:, -1] / 1e6  # Hz -> MHz
        return freqMHz

    def get_slice(self, nth=0):
        """
        Extract the specified nth frequency slice from the cube.
        """
        if not self.is_cube:
            logger.warning("Input FITS file is not a spectral cube: %s" %
                           self.infile)
            return self.cube
        else:
            return self.cube[nth, :, :]


class SkyModel:
    """
    OSKAR sky model.
    """
    def __init__(self, image, freq, pixsize, ra0, dec0):
        self.image = image  # K (brightness temperature)
        self.freq = freq  # MHz
        self.pixsize = pixsize  # arcsec
        self.ra0 = ra0  # deg
        self.dec0 = dec0  # deg
        logger.info("SkyModel: Loaded image @ %.2f [MHz]" % freq)

    @property
    def wcs(self):
        """
        WCS for the given image assuming the 'SIN' projection.
        """
        shape = self.image.shape
        delta = self.pixsize / 3600.0  # deg
        wcs_ = WCS(naxis=2)
        wcs_.wcs.ctype = ["RA---SIN", "DEC--SIN"]
        wcs_.wcs.crval = np.array([self.ra0, self.dec0])
        wcs_.wcs.crpix = np.array([shape[1], shape[0]]) / 2.0 + 1
        wcs_.wcs.cdelt = np.array([delta, delta])
        return wcs_

    @property
    def fits_header(self):
        header = self.wcs.to_header()
        header["BUNIT"] = ("Jy/pixel", "Brightness unit")
        header["FREQ"] = (self.freq, "Frequency [MHz]")
        header["RA0"] = (self.ra0, "Center R.A. [deg]")
        header["DEC0"] = (self.dec0, "Center Dec. [deg]")
        return header

    @property
    def factor_K2JyPixel(self):
        """
        Conversion factor to convert brightness unit from 'K' to 'Jy/pixel'

        http://www.iram.fr/IRAMFR/IS/IS2002/html_1/node187.html
        """
        pixarea = np.deg2rad(self.pixsize/3600.0) ** 2  # [sr]
        kB = ac.k_B.si.value  # Boltzmann constant [J/K]
        c0 = ac.c.si.value  # speed of light in vacuum [m/s]
        freqHz = self.freq * 1e6  # [Hz]
        factor = 2*kB * 1.0e26 * pixarea * (freqHz/c0)**2
        return factor

    @property
    def ra_dec(self):
        """
        Calculate the (ra, dec) of each image pixel using the above WCS.

        NOTE: axis ordering difference between numpy array and FITS
        """
        shape = self.image.shape
        wcs = self.wcs
        x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]))
        pix = np.column_stack([x.flatten(), y.flatten()])
        world = wcs.wcs_pix2world(pix, 0)
        ra = world[:, 0].reshape(shape)
        dec = world[:, 1].reshape(shape)
        return (ra, dec)

    @property
    def sky(self):
        """
        OSKAR sky model array converted from the input image.

        Columns
        -------
        ra : (J2000) right ascension (deg)
        dec : (J2000) declination (deg)
        flux : source (Stokes I) flux density (Jy)
        """
        ra, dec = self.ra_dec
        ra = ra.flatten()
        dec = dec.flatten()
        flux = self.image.flatten() * self.factor_K2JyPixel
        mask = flux > 1e-40
        sky_ = np.column_stack([ra[mask], dec[mask], flux[mask]])
        return sky_

    def write_sky_model(self, outfile, clobber=False):
        """
        Write the converted sky model for simulation.
        """
        if os.path.exists(outfile) and (not clobber):
            raise OSError("oskar sky model file already exists: " % outfile)
        sky = self.sky
        header=("Frequency = %.3f [MHz]\n" % self.freq +
                "Pixel size = %.2f arcsec\n" % self.pixsize +
                "RA0 = %.4f [deg]\n" % self.ra0 +
                "Dec0 = %.4f [deg]\n" % self.dec0 +
                "Number of sources = %d\n\n" % len(sky) +
                "R.A.[deg]    Dec.[deg]    flux[Jy]")
        np.savetxt(outfile, sky, fmt='%.10e, %.10e, %.10e', header=header)
        logger.info("Wrote oskar sky model file: %s" % outfile)

    def write_fits(self, outfile, oldheader=None, clobber=False):
        if os.path.exists(outfile) and (not clobber):
            raise OSError("Sky FITS already exists: " % outfile)
        if oldheader is not None:
            header = oldheader
            header.extend(self.fits_header, update=True)
        else:
            header = self.fits_header
        image = self.image * self.factor_K2JyPixel
        hdu = fits.PrimaryHDU(data=image, header=header)
        hdu.writeto(outfile, overwrite=True)
        logger.info("Wrote sky FITS to file: %s" % outfile)


class Oskar:
    """
    Run OSKAR simulations
    """
    def __init__(self, settings):
        self.settings = settings

    def run(self, settingsfile, dryrun=False):
        cmd = [self.settings.oskar_bin]
        if self.settings.quiet:
            cmd += ["--quiet"]
        cmd += [settingsfile]
        logger.info("Running OSKAR simulator: CMD: %s" % " ".join(cmd))
        if dryrun:
            logger.info("Dry run!")
        else:
            subprocess.check_call(cmd)


def main():
    parser = argparse.ArgumentParser(
        description="Run OSKAR to simulate visibilities")
    parser.add_argument("config", help="Configuration file")
    args = parser.parse_args()

    settings = Settings(args.config)
    clobber = settings.clobber
    image_cube = SpectralCube(settings.input_cube)
    frequencies = image_cube.frequencies  # [MHz]
    if frequencies is None:
        frequencies = [settings.frequency]
    logger.info("Number of image slices/frequencies: %d" % len(frequencies))

    for nth, freq in enumerate(frequencies):
        logger.info(">>> Processing #%d/%d image slice @ %.2f [MHz] <<<" %
                    (nth+1, len(frequencies), freq))
        settingsfile = settings.output_settings_fn.format(freq=freq)
        skymodelfile = settings.output_skymodel_fn.format(freq=freq)
        skyfitsfile = settings.output_skyfits_fn.format(freq=freq)
        msfile = settings.output_ms_fn.format(freq=freq)
        visfile = settings.output_vis_fn.format(freq=freq)
        for filepath in [settingsfile, skymodelfile, skyfitsfile,
                         msfile, visfile]:
            dname = os.path.dirname(filepath)
            if not os.path.isdir(dname):
                os.makedirs(dname)

        newconfig = configparser.ConfigParser()
        newconfig.read_dict({
            "sky": {
                "oskar_sky_model/file": skymodelfile,
            },
            "observation": {
                "start_frequency_hz": freq * 1e6,
            },
            "interferometer": {
                "oskar_vis_filename": visfile,
                "ms_filename": msfile,
            },
        })
        settings.update_oskar_settings(newconfig)
        settings.write_oskar_settings(outfile=settingsfile, clobber=clobber)

        image_slice = image_cube.get_slice(nth)
        skymodel = SkyModel(image=image_slice, freq=freq,
                            pixsize=settings.image_pixsize,
                            ra0=settings.ra0, dec0=settings.dec0)
        skymodel.write_sky_model(skymodelfile, clobber=clobber)
        skymodel.write_fits(skyfitsfile, oldheader=image_cube.header,
                            clobber=clobber)

        oskar = Oskar(settings)
        oskar.run(settingsfile, dryrun=settings.dryrun)


if __name__ == '__main__':
    main()