aboutsummaryrefslogtreecommitdiffstats
path: root/astro/ps1d_eorwindow.py
blob: e364fcb36dd9bc6338460fb50865b93c9fef26e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/env python3
#
# Copyright (c) 2017 Weitna LI <weitian@aaronly.me>
# MIT License
#

"""
Average the 2D power spectrum within the EoR window (i.e., excluding the
foreground contaminated wedge) to derive the 1D spherically averaged
power spectrum.
"""

import os
import argparse

import numpy as np

import matplotlib
import matplotlib.style
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure

from eor_window import PS2D


# Matplotlib settings
matplotlib.style.use("ggplot")
for k, v in [("font.family",       "monospace"),
             ("image.cmap",        "jet"),
             ("xtick.major.size",  7.0),
             ("xtick.major.width", 2.0),
             ("xtick.minor.size",  4.0),
             ("xtick.minor.width", 1.5),
             ("ytick.major.size",  7.0),
             ("ytick.major.width", 2.0),
             ("ytick.minor.size",  4.0),
             ("ytick.minor.width", 1.5)]:
    matplotlib.rcParams[k] = v


class PS1D:
    """
    Calculate the 1D spherically averaged power spectrum from 2D PS.

    Parameters
    ----------
    ps2d : `~PS2D`
        A `~PS2D` instance
    step : float, optional
        By default, a logarithmic grid with the specified step ratio
        (default: 1.1) will be used to do the azimuthal averages.
        If specified a value <=1 or None, then an equal-width pixel-by-pixel
        (along radial direction) grid is adopted.
    """
    def __init__(self, ps2d, step=1.1):
        self.ps2d = ps2d
        self.data = ps2d.ps2d  # shape: [n_k_los, n_k_perp]
        self.data_err = ps2d.ps2d_err
        self.eor_window = ps2d.eor_window

        if step is None or step <= 1:
            self.step = None
        else:
            self.step = step

    @property
    def k_perp(self):
        return self.ps2d.k_perp

    @property
    def k_los(self):
        return self.ps2d.k_los

    @property
    def dk(self):
        """
        The wavenumber k bin size that will be used to determine the
        averaging grid.  Considering that the angular and line-of-sight
        wavenumber bin sizes are very different, their geometric mean
        is used instead.
        """
        k_perp = self.k_perp
        k_los = self.k_los
        dk_perp = k_perp[1] - k_perp[0]
        dk_los = k_los[1] - k_los[0]
        return np.sqrt(dk_perp * dk_los)

    @property
    def k(self):
        """
        The radial k positions to determine the averaging bins to derive
        the 1D power spectrum.
        """
        k_max = np.sqrt(self.k_perp[-1]**2 + self.k_los[-1]**2)
        dk = self.dk
        nk = int(k_max / dk) + 1
        x = np.arange(nk)
        if self.step is None:
            return x * dk
        else:
            xmax = x.max()
            x2 = list(x[x*(self.step-1) <= 1])
            v1 = x[len(x2)]
            while v1 < xmax:
                x2.append(v1)
                v1 *= self.step
            x2.append(xmax)
            return np.array(x2) * dk

    def calc_ps1d(self, normalize=True):
        """
        Calculate the 1D spherically averaged power spectrum by averaging
        the 2D cylindrical power spectrum.

        Parameters
        ----------
        normalize : bool
            Whether to normalize the 1D power spectrum to obtain the
            dimensionless one, i.e.,
                Δ^2(k) = (k^3 / (2*π^2)) P(k)

        Attributes
        ----------
        ps1d : 2D `~numpy.ndarray`
            3-column array storing the calculated 1D power spectrum,
            ``[k, ps1d, ps1d_err]``
        ps1d_normalized : bool
            Whether the calculated 1D power spectrum is normalized?

        Returns
        -------
        ps1d
        """
        ps2d = self.data
        ps2d_err = self.data_err
        k_perp = self.k_perp
        k_los = self.k_los
        ps1d_k = self.k
        nk = len(ps1d_k)
        print("Number of k points: %d" % nk)

        # PS1D's 3 columns: [k, ps1d, ps1d_err]
        ps1d = np.zeros(shape=(nk, 3))
        ps1d[:, 0] = ps1d_k

        print("Averaging 2D power spectrum ...")
        mx, my = np.meshgrid(k_perp, k_los)
        mk = np.sqrt(mx**2 + my**2)
        mk[~self.eor_window] = np.inf  # constrain within EoR window

        for i, k in enumerate(ps1d_k):
            ii, jj = (mk <= k).nonzero()
            mk[ii, jj] = np.inf
            data = ps2d[ii, jj]
            errors = ps2d_err[ii, jj]
            ncell = len(data)
            if ncell > 0:
                ps1d[i, 1] = np.mean(data)
                # XXX: how to properly estimate the errors???
                ps1d[i, 2] = np.sqrt(np.sum(errors ** 2)) / ncell

        if normalize:
            # XXX: is this normalization correct???
            coef = ps1d_k**3 / (2*np.pi**2)
            ps1d[:, 1] *= coef
            ps1d[:, 2] *= coef
            self.ps1d_normalized = True
        else:
            self.ps1d_normalized = False

        self.ps1d = ps1d
        return ps1d

    def save(self, outfile):
        if self.ps1d_normalized:
            ps1d_desc = "normalized power [K^2]"
        else:
            ps1d_desc = "power [K^2 Mpc^3]"
        header = [
            "EoR window definition:",
            "+ FoV: %f [deg]" % self.ps2d.fov,
            "+ e_ConvWidth: %f" % self.ps2d.e,
            "+ k_perp_min: %f [Mpc^-1]" % self.ps2d.k_perp_min,
            "+ k_perp_max: %f [Mpc^-1]" % self.ps2d.k_perp_max,
            "+ k_los_min: %f [Mpc^-1]" % self.ps2d.k_los_min,
            "+ k_los_max: %f [Mpc^-1]" % self.ps2d.k_los_max,
            "",
            "Columns:",
            "1. k: wavenumber [Mpc^-1]",
            "2. ps1d: %s" % ps1d_desc,
            "ps1d_err: power errors",
            "",
            "k   ps1d   ps1d_err",
        ]
        np.savetxt(outfile, self.ps1d, header="\n".join(header))
        print("Saved 1D power spectrum to file: %s" % outfile)

    def plot(self, ax):
        ps1d = self.ps1d
        if self.ps1d_normalized:
            ylabel = r"$\Delta^2(k)$ [K$^2$]"
        else:
            ylabel = r"$P(k)$ [K$^2$ Mpc$^3$]"

        x = ps1d[:, 0]
        y = ps1d[:, 1]
        yerr = ps1d[:, 2]
        ax.errorbar(x[1:], y[1:], yerr=yerr[1:], fmt="none")
        ax.plot(x[1:], y[1:], marker="o")
        ax.set(xscale="log", yscale="log",
               xlabel=r"$k$ [Mpc$^{-1}$]", ylabel=ylabel,
               title="1D Spherically Averaged Power Spectrum")
        return ax


def main():
    parser = argparse.ArgumentParser(
        description="Calculate 1D power spectrum within the EoR window")
    parser.add_argument("-C", "--clobber", dest="clobber", action="store_true",
                        help="overwrite the output files if already exist")
    parser.add_argument("-s", "--step", dest="step", type=float, default=1.1,
                        help="step ratio (>1; default: 1.1) between 2 " +
                        "consecutive radial k bins, i.e., logarithmic grid. " +
                        "if specified a value <=1, then an equal-width grid " +
                        "of current k bin size will be used.")
    parser.add_argument("-F", "--fov", dest="fov",
                        type=float, required=True,
                        help="instrumental FoV to determine the EoR window; " +
                        "SKA1-Low has FoV ~ 3.12 / (nu/200MHz) [deg], i.e., " +
                        "~5.03 @ 124, ~3.95 @ 158, ~3.18 @ 196")
    parser.add_argument("-e", "--conv-width", dest="conv_width",
                        type=float, default=3.0,
                        help="characteristic convolution width (default: 3.0)")
    parser.add_argument("-p", "--k-perp-min", dest="k_perp_min", type=float,
                        help="minimum k wavenumber perpendicular to LoS; " +
                        "unit: [Mpc^-1]")
    parser.add_argument("-P", "--k-perp-max", dest="k_perp_max", type=float,
                        help="maximum k wavenumber perpendicular to LoS")
    parser.add_argument("-l", "--k-los-min", dest="k_los_min", type=float,
                        help="minimum k wavenumber along LoS")
    parser.add_argument("-L", "--k-los-max", dest="k_los_max", type=float,
                        help="maximum k wavenumber along LoS")
    parser.add_argument("--no-plot", dest="noplot", action="store_true",
                        help="do not plot and save the calculated 1D power " +
                        "power within the EoR window")
    parser.add_argument("-i", "--infile", dest="infile", required=True,
                        help="2D power spectrum FITS file")
    parser.add_argument("-o", "--outfile", dest="outfile", required=True,
                        help="output TXT file to save the PSD data")
    args = parser.parse_args()

    if (not args.clobber) and os.path.exists(args.outfile):
        raise OSError("outfile '%s' already exists" % args.outfile)

    ps2d = PS2D(args.infile, fov=args.fov, e=args.conv_width,
                k_perp_min=args.k_perp_min, k_perp_max=args.k_perp_max,
                k_los_min=args.k_los_min, k_los_max=args.k_los_max)
    ps1d = PS1D(ps2d, step=args.step)
    ps1d.calc_ps1d()
    ps1d.save(args.outfile)

    if not args.noplot:
        fig = Figure(figsize=(8, 8), dpi=150)
        FigureCanvas(fig)
        ax = fig.add_subplot(1, 1, 1)
        ps1d.plot(ax=ax)
        fig.tight_layout()
        plotfile = os.path.splitext(args.outfile)[0] + ".png"
        fig.savefig(plotfile)
        print("Plotted 1D power spectrum within EoR window: %s" % plotfile)


if __name__ == "__main__":
    main()