1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
#!/usr/bin/env python3
#
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
#
"""
Calculate the 2D cylindrical-averaged power spectrum from the
3D image spectral cube.
"""
import os
import sys
import argparse
import logging
import numpy as np
from scipy import fftpack
from scipy import signal
from astropy.io import fits
from astropy.wcs import WCS
from astropy.cosmology import FlatLambdaCDM
import astropy.constants as ac
logging.basicConfig(level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
datefmt="%Y-%m-%dT%H:%M:%S")
logger = logging.getLogger(os.path.basename(sys.argv[0]))
# present Hubble parameter
H0 = 71.0 # [km/s/Mpc]
# present density parameter of matter
OmegaM0 = 0.27
# HI line frequency
freq21cm = 1420.405751 # [MHz]
def freq2z(freq):
z = freq21cm / freq - 1.0
return z
def get_frequencies(wcs, nfreq):
pix = np.zeros(shape=(nfreq, 3), dtype=np.int)
pix[:, -1] = np.arange(nfreq)
world = wcs.wcs_pix2world(pix, 0)
freqMHz = world[:, -1] / 1e6
return freqMHz
class PS2D:
"""
2D cylindrical-averaged power spectrum
cube dimensions: [nfreq, height, width] / [Z, Y, X]
"""
def __init__(self, cube, pixelsize, frequencies,
window_name=None, window_width="extended"):
logger.info("Initializing PS2D instance ...")
self.cube = cube
self.pixelsize = pixelsize # [arcmin]
logger.info("Image pixel size: %.2f [arcmin]" % pixelsize)
self.frequencies = np.array(frequencies) # [MHz]
self.nfreq = len(self.frequencies)
# Central frequency and redshift
self.freqc = self.frequencies.mean()
self.zc = freq2z(self.freqc)
logger.info("Central frequency %.2f [MHz] <-> redshift %.4f" %
(self.freqc, self.zc))
self.cosmo = FlatLambdaCDM(H0=H0, Om0=OmegaM0)
# Transverse comoving distance at zc; unit: [Mpc]
self.DMz = self.cosmo.comoving_transverse_distance(self.zc).value
self.window_name = window_name
self.window_width = window_width
self.window = self.gen_window(name=window_name, width=window_width)
def gen_window(self, name=None, width="extended"):
if name is None:
return None
window_func = getattr(signal.windows, name)
if width == "extended":
w = window_func(self.nfreq, sym=False)
ex = 1.0 / (w.sum() / self.nfreq)
width_pix = int(ex * self.nfreq)
else:
width_pix = self.nfreq
window = window_func(width_pix, sym=False)
if len(window) > self.nfreq:
# cut the filter
midx = int(len(window) / 2) # index of the peak element
nleft = int(self.nfreq / 2) # number of element on the left
nright = int((self.nfreq-1) / 2) # number of element on the right
window = window[(midx-nleft):(midx+nright+1)]
logger.info("Generated window: %s (%s/%d)" % (name, width, width_pix))
return window
def pad_cube(self):
# Pad the image cube to be square in spatial dimensions.
# TODO
__, ny, nz = self.cube.shape
if ny != nz:
logger.info("Padding image to be square ...")
raise NotImplementedError
def calc_ps3d(self):
"""
Calculate the 3D power spectrum of the image cube.
"""
if self.window is not None:
logger.info("Applying window along frequency axis ...")
cube2 = self.cube * self.window[:, np.newaxis, np.newaxis]
else:
cube2 = self.cube.astype(np.float)
logger.info("Calculating 3D FFT and PS ...")
cubefft = fftpack.fftshift(fftpack.fftn(cube2))
self.ps3d = np.abs(cubefft) ** 2
return self.ps3d
def calc_ps2d(self):
"""
Calculate the 2D power spectrum by cylindrically binning
the above 3D power spectrum.
"""
nz, ny, nx = self.cube.shape
k_x, k_y = self.k_xy
k_z = self.k_z
dkx = np.abs(k_x[0] - k_x[1])
dkz = np.abs(k_z[0] - k_z[1])
vcell = dkx**2 * dkz # volume of each cell [Mpc^-3]
eps = 1e-8
ic_x = (np.abs(k_x) < eps).nonzero()[0][0]
ic_z = (np.abs(k_z) < eps).nonzero()[0][0]
p_x = np.arange(nx) - ic_x
p_z = np.abs(np.arange(nz) - ic_z)
mx, my = np.meshgrid(p_x, p_x)
rho, phi = self.cart2pol(mx, my)
rho = np.around(rho).astype(np.int)
n_k_perp = (nx+1) // 2
n_k_los = (nz+1) // 2
ps2d = np.zeros(shape=(n_k_los, n_k_perp)) # (k_los, k_perp)
logger.info("Calculating 2D PS by binning 3D PS ...")
for r in range(n_k_perp):
ix, iy = (rho == r).nonzero()
for s in range(n_k_los):
iz = (p_z == s).nonzero()[0]
cells = np.concatenate([self.ps3d[z, iy, ix] for z in iz])
volume = cells.size * vcell
ps2d[s, r] = cells.sum() / volume
self.ps2d = ps2d
return ps2d
def save(self, outfile, clobber=False):
"""
Save the calculated 2D power spectrum as a FITS image.
"""
hdu = fits.PrimaryHDU(data=self.ps2d, header=self.header)
try:
hdu.writeto(outfile, overwrite=clobber)
except TypeError:
hdu.writeto(outfile, clobber=clobber)
logger.info("PS2D results saved to file: %s" % outfile)
@property
def k_xy(self):
__, ny, nx = self.cube.shape
dxy = self.DMz * np.deg2rad(self.pixelsize / 60.0) # [Mpc]
kx = 2*np.pi * fftpack.fftshift(fftpack.fftfreq(nx, dxy))
ky = 2*np.pi * fftpack.fftshift(fftpack.fftfreq(ny, dxy))
return (kx, ky) # [Mpc^-1]
@property
def k_z(self):
freq_step = 1e6 * (self.frequencies[1] - self.frequencies[0]) # [Hz]
eta = fftpack.fftshift(fftpack.fftfreq(self.nfreq, freq_step)) # [s]
c = ac.c.si.value # [m/s]
h = H0 * 1000.0 # [m/s/Mpc]
f21cm = freq21cm * 1e6 # [Hz]
denom = c * (1+self.zc)**2 / h / f21cm / self.cosmo.efunc(self.zc)
kz = 2*np.pi * eta / denom
return kz # [Mpc^-1]
@property
def k_perp(self):
"""
Comoving wavenumbers perpendicular to the LoS
NOTE: The Nyquist frequency just located at the first element
after fftshift when the length is even, and it is negative.
"""
k_x, k_y = self.k_xy
return k_x[k_x >= 0]
@property
def k_los(self):
"""
Comoving wavenumbers along the LoS
"""
k_z = self.k_z
return k_z[k_z >= 0]
@staticmethod
def cart2pol(x, y):
"""
Convert Cartesian coordinates to polar coordinates.
"""
rho = np.sqrt(x**2 + y**2)
phi = np.arctan2(y, x)
return (rho, phi)
@property
def header(self):
kx, __ = self.k_xy
kz = self.k_z
dkx = np.abs(kx[0] - kx[1])
dkz = np.abs(kz[0] - kz[1])
hdr = fits.Header()
hdr["HDUNAME"] = ("PS2D", "block name")
hdr["CONTENT"] = ("2D cylindrical-averaged power spectrum",
"data product")
hdr["BUNIT"] = ("K^2 Mpc^3", "data unit")
# Physical coordinates: IRAF LTM/LTV
# Li{Image} = LTMi_i * Pi{Physical} + LTVi
# Reference: ftp://iraf.noao.edu/iraf/web/projects/fitswcs/specwcs.html
hdr["LTV1"] = 0.0
hdr["LTM1_1"] = 1.0 / dkx
hdr["LTV2"] = 0.0
hdr["LTM2_2"] = 1.0 / dkz
# WCS physical coordinates
hdr["WCSTY1P"] = "PHYSICAL"
hdr["CTYPE1P"] = ("k_perp", "wavenumbers perpendicular to LoS")
hdr["CRPIX1P"] = (0.5, "reference pixel")
hdr["CRVAL1P"] = (0.0, "coordinate of the reference pixel")
hdr["CDELT1P"] = (dkx, "coordinate delta/step")
hdr["CUNIT1P"] = ("Mpc^-1", "coordinate unit")
hdr["WCSTY2P"] = "PHYSICAL"
hdr["CTYPE2P"] = ("k_los", "wavenumbers along LoS")
hdr["CRPIX2P"] = (0.5, "reference pixel")
hdr["CRVAL2P"] = (0.0, "coordinate of the reference pixel")
hdr["CDELT2P"] = (dkz, "coordinate delta/step")
hdr["CUNIT2P"] = ("Mpc^-1", "coordinate unit")
# Command history
hdr.add_history(" ".join(sys.argv))
return hdr
def main():
parser = argparse.ArgumentParser(
description="Calculate 2D PS from 3D image cube")
parser.add_argument("-C", "--clobber", dest="clobber",
action="store_true",
help="overwrite existing file")
parser.add_argument("-p", "--pixelsize", dest="pixelsize",
type=float, required=True,
help="image cube pixel size; unit: [arcmin]")
parser.add_argument("--window", dest="window",
choices=["nuttall"],
help="apply window along frequency axis " +
"(default: None)")
parser.add_argument("-i", "--infile", dest="infile", required=True,
help="input FITS image cube")
parser.add_argument("-o", "--outfile", dest="outfile", required=True,
help="output 2D power spectrum FITS file")
args = parser.parse_args()
with fits.open(args.infile) as f:
cube = f[0].data
wcs = WCS(f[0].header)
nfreq = cube.shape[0]
frequencies = get_frequencies(wcs, nfreq)
logger.info("%d frequencies [MHz]:" % nfreq)
for f in frequencies:
logger.info("* %.2f" % f)
ps2d = PS2D(cube=cube, pixelsize=args.pixelsize, frequencies=frequencies,
window_name=args.window)
ps2d.calc_ps3d()
ps2d.calc_ps2d()
ps2d.save(outfile=args.outfile, clobber=args.clobber)
if __name__ == "__main__":
main()
|