1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
#!/usr/bin/env python3
#
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
#
"""
Calculate the 2D cylindrical-averaged power spectrum from the
3D image spectral cube.
References
----------
.. [liu2014]
Liu, Parsons & Trott 2014, PhRvD, 90, 023018
http://adsabs.harvard.edu/abs/2014PhRvD..90b3018L
Appendix.A
.. [morales2004]
Morales & Hewitt 2004, ApJ, 615, 7
http://adsabs.harvard.edu/abs/2004ApJ...615....7M
Sec.3
.. [matlab-psd-fft]
MATLAB - Power Spectral Density Estimates Using FFT
https://cn.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-fft.html
.. [matlab-answer-psd]
MATLAB Answers - How to create power spectral density from FFT
https://cn.mathworks.com/matlabcentral/answers/43548-how-to-create-power-spectral-density-from-fft-fourier-transform
"""
import os
import sys
import argparse
import logging
import numpy as np
from scipy import fftpack
from scipy import signal
from astropy.io import fits
from astropy.wcs import WCS
from astropy.cosmology import FlatLambdaCDM
import astropy.constants as ac
logging.basicConfig(level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
datefmt="%H:%M:%S")
logger = logging.getLogger(os.path.basename(sys.argv[0]))
# HI line frequency
freq21cm = 1420.405751 # [MHz]
# Adopted cosmology
H0 = 71.0 # [km/s/Mpc]
OmegaM0 = 0.27
cosmo = FlatLambdaCDM(H0=H0, Om0=OmegaM0)
def freq2z(freq):
z = freq21cm / freq - 1.0
return z
def get_frequencies(wcs, nfreq):
pix = np.zeros(shape=(nfreq, 3), dtype=np.int)
pix[:, -1] = np.arange(nfreq)
world = wcs.wcs_pix2world(pix, 0)
freqMHz = world[:, -1] / 1e6
return freqMHz
class PS2D:
"""
2D cylindrically averaged power spectrum
NOTE
----
* Cube dimensions: [nfreq, height, width] <-> [Z, Y, X]
* Cube data unit: [K] (brightness temperature)
"""
def __init__(self, cube, pixelsize, frequencies,
window_name=None, window_width="extended", unit="???"):
logger.info("Initializing PS2D instance ...")
self.cube = cube
self.pixelsize = pixelsize # [arcsec]
self.unit = unit
logger.info("Loaded data cube: %dx%d (cells) * %d (channels)" %
(self.Nx, self.Ny, self.Nz))
logger.info("Image pixel size: %.2f [arcsec]" % pixelsize)
logger.info("Data unit: %s" % unit)
self.frequencies = np.asarray(frequencies) # [MHz]
self.nfreq = len(self.frequencies)
self.dfreq = self.frequencies[1] - self.frequencies[0] # [MHz]
if self.nfreq != self.Nz:
raise RuntimeError("data cube and frequencies do not match!")
logger.info("Frequency band: %.2f-%.2f [MHz]" %
(self.frequencies.min(), self.frequencies.max()))
logger.info("Frequency channel width: %.2f [MHz], %d channels" %
(self.dfreq, self.nfreq))
# Central frequency and redshift
self.freqc = self.frequencies.mean()
self.zc = freq2z(self.freqc)
logger.info("Central frequency %.2f [MHz] <-> redshift %.4f" %
(self.freqc, self.zc))
# Transverse comoving distance at zc; unit: [Mpc]
self.DMz = cosmo.comoving_transverse_distance(self.zc).value
self.window_name = window_name
self.window_width = window_width
self.window = self.gen_window(name=window_name, width=window_width)
def gen_window(self, name=None, width="extended"):
if name is None:
return None
window_func = getattr(signal.windows, name)
if width == "extended":
w = window_func(self.nfreq, sym=False)
ex = 1.0 / (w.sum() / self.nfreq)
width_pix = int(ex * self.nfreq)
else:
width_pix = self.nfreq
window = window_func(width_pix, sym=False)
if len(window) > self.nfreq:
# cut the filter
midx = int(len(window) / 2) # index of the peak element
nleft = int(self.nfreq / 2) # number of element on the left
nright = int((self.nfreq-1) / 2) # number of element on the right
window = window[(midx-nleft):(midx+nright+1)]
logger.info("Generated window: %s (%s/%d)" % (name, width, width_pix))
return window
def pad_cube(self):
"""
Pad the image cube to be square in spatial dimensions.
"""
if self.Nx != self.Ny:
logger.info("Padding image to be square ...")
raise NotImplementedError
def calc_ps3d(self):
"""
Calculate the 3D power spectrum of the image cube.
The power spectrum is properly normalized to have dimension
of [K^2 Mpc^3].
"""
if self.window is not None:
logger.info("Applying window along frequency axis ...")
cube2 = self.cube * self.window[:, np.newaxis, np.newaxis]
else:
cube2 = self.cube.astype(np.float)
logger.info("Calculating 3D FFT ...")
cubefft = fftpack.fftshift(fftpack.fftn(cube2))
logger.info("Calculating 3D PS ...")
ps3d = np.abs(cubefft) ** 2 # [K^2]
# Normalization
norm1 = 1 / (self.Nx * self.Ny * self.Nz)
norm2 = 1 / (self.fs_xy**2 * self.fs_z) # [Mpc^3]
norm3 = 1 / (2*np.pi)**3
self.ps3d = ps3d * norm1 * norm2 * norm3 # [K^2 Mpc^3]
return self.ps3d
def calc_ps2d(self):
"""
Calculate the 2D power spectrum by cylindrically binning
the above 3D power spectrum.
"""
logger.info("Calculating 2D power spectrum ...")
n_k_perp = len(self.k_perp)
n_k_los = len(self.k_los)
ps2d = np.zeros(shape=(n_k_los, n_k_perp)) # (k_los, k_perp)
eps = 1e-8
ic_xy = (np.abs(self.k_xy) < eps).nonzero()[0][0]
ic_z = (np.abs(self.k_z) < eps).nonzero()[0][0]
p_xy = np.arange(self.Nx) - ic_xy
p_z = np.abs(np.arange(self.Nz) - ic_z)
mx, my = np.meshgrid(p_xy, p_xy)
rho, phi = self.cart2pol(mx, my)
rho = np.around(rho).astype(np.int)
logger.info("Cylindrically averaging 3D power spectrum ...")
for r in range(n_k_perp):
ix, iy = (rho == r).nonzero()
for s in range(n_k_los):
iz = (p_z == s).nonzero()[0]
cells = np.concatenate([self.ps3d[z, iy, ix] for z in iz])
ps2d[s, r] = cells.mean()
self.ps2d = ps2d
return ps2d
def save(self, outfile, clobber=False):
"""
Save the calculated 2D power spectrum as a FITS image.
"""
hdu = fits.PrimaryHDU(data=self.ps2d, header=self.header)
try:
hdu.writeto(outfile, overwrite=clobber)
except TypeError:
hdu.writeto(outfile, clobber=clobber)
logger.info("Wrote 2D power spectrum to file: %s" % outfile)
@property
def Nx(self):
"""
Number of cells/pixels along the X axis.
Cube shape/dimensions: [Z, Y, X]
"""
return self.cube.shape[2]
@property
def Ny(self):
return self.cube.shape[1]
@property
def Nz(self):
return self.cube.shape[0]
@property
def d_xy(self):
"""
The sampling interval along the (X, Y) spatial dimensions,
translated from the pixel size.
Unit: [Mpc]
Reference: Ref.[liu2014].Eq.(A7)
"""
pixelsize = self.pixelsize / 3600 # [arcsec] -> [deg]
d_xy = self.DMz * np.deg2rad(pixelsize)
return d_xy
@property
def d_z(self):
"""
The sampling interval along the Z line-of-sight dimension,
translated from the frequency channel width.
Unit: [Mpc]
Reference: Ref.[liu2014].Eq.(A9)
"""
dfreq = self.dfreq # [MHz]
c = ac.c.si.value # [m/s]
Ez = cosmo.efunc(self.zc)
Hz = Ez * H0 * 1000.0 # [m/s/Mpc]
d_z = c * (1+self.zc)**2 * dfreq / Hz / freq21cm
return d_z
@property
def fs_xy(self):
"""
The sampling frequency along the (X, Y) spatial dimensions:
Fs = 1/T (inverse of interval)
Unit: [Mpc^-1]
"""
return 1/self.d_xy
@property
def fs_z(self):
"""
The sampling frequency along the Z line-of-sight dimension.
Unit: [Mpc^-1]
"""
return 1/self.d_z
@property
def df_xy(self):
"""
The spatial frequency bin size (i.e., resolution) along the
(X, Y) dimensions.
Unit: [Mpc^-1]
"""
return self.fs_xy / self.Nx
@property
def df_z(self):
"""
The spatial frequency bin size (i.e., resolution) along the
line-of-sight (Z) direction.
Unit: [Mpc^-1]
"""
return self.fs_z / self.Nz
@property
def dk_xy(self):
"""
The k-space (spatial) frequency bin size (i.e., resolution).
"""
return 2*np.pi * self.df_xy
@property
def dk_z(self):
return 2*np.pi * self.df_z
@property
def k_xy(self):
"""
The k-space coordinates along the (X, Y) spatial dimensions,
which describe the spatial frequencies.
NOTE:
k = 2*pi * f, where "f" is the spatial frequencies, and the
Fourier dual to spatial transverse distances x/y.
Unit: [Mpc^-1]
"""
f_xy = fftpack.fftshift(fftpack.fftfreq(self.Nx, d=self.d_xy))
k_xy = 2*np.pi * f_xy
return k_xy
@property
def k_z(self):
f_z = fftpack.fftshift(fftpack.fftfreq(self.Nz, d=self.d_z))
k_z = 2*np.pi * f_z
return k_z
@property
def k_perp(self):
"""
Comoving wavenumbers perpendicular to the LoS
NOTE: The Nyquist frequency just located at the first element
after fftshift when the length is even, and it is negative.
"""
k_x = self.k_xy
return k_x[k_x >= 0]
@property
def k_los(self):
"""
Comoving wavenumbers along the LoS
"""
k_z = self.k_z
return k_z[k_z >= 0]
@staticmethod
def cart2pol(x, y):
"""
Convert Cartesian coordinates to polar coordinates.
"""
rho = np.sqrt(x**2 + y**2)
phi = np.arctan2(y, x)
return (rho, phi)
@property
def header(self):
dk_xy = self.dk_xy
dk_z = self.dk_z
hdr = fits.Header()
hdr["HDUNAME"] = ("PS2D", "block name")
hdr["CONTENT"] = ("2D cylindrically averaged power spectrum",
"data product")
hdr["BUNIT"] = ("%s^2 Mpc^3" % self.unit, "data unit")
# Physical coordinates: IRAF LTM/LTV
# Li{Image} = LTMi_i * Pi{Physical} + LTVi
# Reference: ftp://iraf.noao.edu/iraf/web/projects/fitswcs/specwcs.html
hdr["LTV1"] = 0.0
hdr["LTM1_1"] = 1.0 / dk_xy
hdr["LTV2"] = 0.0
hdr["LTM2_2"] = 1.0 / dk_z
# WCS physical coordinates
hdr["WCSTY1P"] = "PHYSICAL"
hdr["CTYPE1P"] = ("k_perp", "wavenumbers perpendicular to LoS")
hdr["CRPIX1P"] = (0.5, "reference pixel")
hdr["CRVAL1P"] = (0.0, "coordinate of the reference pixel")
hdr["CDELT1P"] = (dk_xy, "coordinate delta/step")
hdr["CUNIT1P"] = ("Mpc^-1", "coordinate unit")
hdr["WCSTY2P"] = "PHYSICAL"
hdr["CTYPE2P"] = ("k_los", "wavenumbers along LoS")
hdr["CRPIX2P"] = (0.5, "reference pixel")
hdr["CRVAL2P"] = (0.0, "coordinate of the reference pixel")
hdr["CDELT2P"] = (dk_z, "coordinate delta/step")
hdr["CUNIT2P"] = ("Mpc^-1", "coordinate unit")
# Data information
hdr["PixSize"] = (self.pixelsize, "[arcsec] data cube pixel size")
hdr["Z_C"] = (self.zc, "data cube central redshift")
hdr["Freq_C"] = (self.freqc, "[MHz] data cube central frequency")
hdr["Freq_Min"] = (self.frequencies.min(),
"[MHz] data cube minimum frequency")
hdr["Freq_Max"] = (self.frequencies.max(),
"[MHz] data cube maximum frequency")
# Command history
hdr.add_history(" ".join(sys.argv))
return hdr
def main():
parser = argparse.ArgumentParser(
description="Calculate 2D power spectrum from 3D image cube")
parser.add_argument("-C", "--clobber", dest="clobber",
action="store_true",
help="overwrite existing file")
parser.add_argument("-p", "--pixelsize", dest="pixelsize", type=float,
help="image cube pixel size [arcsec] (default: " +
"obtain from FITS header WCS info)")
parser.add_argument("--window", dest="window",
choices=["nuttall"],
help="apply window along frequency axis " +
"(default: None)")
parser.add_argument("-i", "--infile", dest="infile", nargs="+",
help="input FITS image cube(s); if multiple cubes " +
"are provided, they are added first.")
parser.add_argument("-o", "--outfile", dest="outfile", required=True,
help="output 2D power spectrum FITS file")
args = parser.parse_args()
with fits.open(args.infile[0]) as f:
cube = f[0].data
header = f[0].header
bunit = header.get("BUNIT", "???")
logger.info("Cube data unit: %s" % bunit)
if bunit.upper() not in ["K", "KELVIN", "MK"]:
logger.warning("input cube in unknown unit: %s" % bunit)
for fn in args.infile[1:]:
logger.info("Adding additional FITS cube: %s" % fn)
with fits.open(fn) as f:
cube2 = f[0].data
header2 = f[0].header
bunit2 = header2.get("BUNIT", "???")
if bunit2.upper() == bunit.upper():
cube += cube2
else:
raise ValueError("cube has different unit: %s" % bunit2)
wcs = WCS(header)
nfreq = cube.shape[0]
frequencies = get_frequencies(wcs, nfreq)
if args.pixelsize:
pixelsize = args.pixelsize # [arcsec]
else:
pixelsize = abs(wcs.wcs.cdelt[0]) * 3600 # [deg] -> [arcsec]
ps2d = PS2D(cube=cube, pixelsize=pixelsize, frequencies=frequencies,
window_name=args.window, unit=bunit)
ps2d.calc_ps3d()
ps2d.calc_ps2d()
ps2d.save(outfile=args.outfile, clobber=args.clobber)
if __name__ == "__main__":
main()
|