1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
#!/usr/bin/env python3
#
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT License
#
"""
Make/simulate the X-ray photon list from the object's image and
spectral models.
The simulated X-ray photon list will be used to simulate the
Suzaku event observation by ``xissim`` tool.
This script is intended to replace and extend the abilities of the
``mkphlist`` tool.
NOTE
----
The environment variable ``HEADAS`` should be set in order to help
locate the ``PyXspec`` module and XSPEC shared libraries.
References
----------
* mkphlist: https://heasarc.gsfc.nasa.gov/lheasoft/ftools/headas/mkphlist.txt
* xissim: https://heasarc.gsfc.nasa.gov/lheasoft/ftools/headas/xissim.txt
* PyXspec: https://heasarc.gsfc.nasa.gov/xanadu/xspec/python/html/index.html
Example Configuration File
-----------------------------------------------------------------------
# image to determine the photon counts distribution
image: imgbox800_e500-7000_sm.fits
# region (annuli below) center; in "image" coordinate
center: [400, 399]
nh: 0.03 # 1e22 [cm^-2]
redshift: 0.0137
# simulated photon energy range [keV]
erange: [0.3, 10.0]
# number of energy bins (logarithmic)
ebins: 1000
# total photon counts that will be generated
counts: 300000
# exposure [ks]
exposure: 50
# a set of annular regions, with several pie regions inside each
# annulus; each pie region can have a different spectral model.
regions:
# annulus 1, with 3 pies
- radius: [0, 100]
angle: [0, 120, 200]
temperature: [1.0, 1.5, 2.0]
abundance: [0.5, 1.0, 1.5]
weight: [1, 2, 1.5]
# annulus 2, with 3 pies
- radius: [100, 200]
angle: [0, 90, 250]
temperature: [0.5, 1.0, 1.5]
abundance: [1.5, 2.0, 1.0]
weight: [0.5, 1, 1.5]
# annulus 3, with 4 pies
- radius: [200, 400]
angle: [50, 150, 220, 300]
temperature: [0.8, 1.2, 1.5, 1.3]
abundance: [1.1, 2.0, 1.5, 1.2]
weight: [0.2, 1.5, 0.7, 2]
clobber: True
outfiles:
photons_table: photons.fits
counts_map: counts_map.fits
temperature_map: temperature_map.fits
abundance_map: abundance_map.fits
-----------------------------------------------------------------------
"""
import os
import sys
try:
headas = os.environ["HEADAS"]
healib = os.path.join(headas, "lib")
except KeyError:
raise ValueError("env variable 'HEADAS' not set")
if ("LD_LIBRARY_PATH" not in os.environ) or (
os.environ["LD_LIBRARY_PATH"].find(healib) < 0):
os.environ["LD_LIBRARY_PATH"] = ":".join([
healib, os.environ.get("LD_LIBRARY_PATH", "")
])
try:
# Hack the ``LD_LIBRARY_PATH`` to import Xspec
# Credit: https://stackoverflow.com/a/25457751/4856091
print("sys.argv:", sys.argv)
os.execv(sys.argv[0], sys.argv)
except Exception:
print("ERROR: failed to re-exec with new LD_LIBRARY_PATH")
raise
sys.path.append(os.path.join(healib, "python"))
import xspec
print("Imported XSPEC!")
import argparse
import logging
from pprint import pprint
import yaml
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
logging.basicConfig(level=logging.INFO,
format="[%(levelname)s:%(lineno)d] %(message)s")
logger = logging.getLogger()
class Pie:
"""
Pie region
"""
def __init__(self, xc, yc, rin, rout, abegin, aend):
self.xc = xc
self.yc = yc
self.rin = rin
self.rout = rout
self.abegin = abegin # [deg] beginning angle
self.aend = aend # [deg] ending angle (may be > 360)
# spectral model parameters
self._modelpars = {}
@staticmethod
def cart2pol(x, y):
rho = np.sqrt(x**2 + y**2)
phi = 180 + np.rad2deg(np.arctan2(y, x)) # 0-360 [deg]
return (rho, phi)
def make_mask(self, shape):
try:
nrow, ncol = shape
except TypeError:
nrow = ncol = shape
# HACK: to make the masks consistent with ``rand_position()``
ix = self.xc - np.arange(ncol)
iy = self.yc - np.arange(nrow)
mx, my = np.meshgrid(ix, iy)
rho, phi = self.cart2pol(mx, my)
mask_rho = (rho >= self.rin) & (rho <= self.rout)
mask_phi = (phi >= self.abegin) & (phi <= self.aend)
if self.aend > 360:
mask_phi |= (phi <= (self.aend-360))
mask = mask_rho & mask_phi
return mask
def rand_position(self, n=None):
if n is None:
n = self.modelpar("counts")
theta = np.random.uniform(low=self.abegin, high=self.aend, size=n)
r = np.sqrt(np.random.uniform(low=self.rin**2, high=self.rout**2,
size=n))
x = r * np.cos(np.deg2rad(theta)) + self.xc
y = r * np.sin(np.deg2rad(theta)) + self.yc
return (x, y)
def modelpar(self, key=None, value=None):
if key is None:
return self._modelpars
elif value is None:
return self._modelpars.get(key)
else:
self._modelpars[key] = value
def set_model(self, nh, redshift):
model = xspec.Model("wabs*apec")
model.wabs.nH = nh
model.apec.Redshift = redshift
model.apec.kT = self.modelpar("temperature")
model.apec.Abundanc = self.modelpar("abundance")
self._model = model
def rand_photons(self, n=None):
if n is None:
n = self.modelpar("counts")
model = self._model
mvalues = np.array(model.values(0), dtype=float) # len: ebins
p = mvalues / mvalues.sum()
menergies = np.array(model.energies(0), dtype=float) # len: ebins+1
mebins = np.sqrt(menergies[1:] * menergies[:-1])
photons = np.random.choice(mebins, size=n, p=p)
return photons # [keV]
class Regions:
"""
Configured regions
"""
def __init__(self, configs):
self.configs = configs
self.xc, self.yc = configs["center"]
@property
def rmax(self):
rmax = 0
for annulus in self.configs["regions"]:
rin, rout = annulus["radius"]
if rmax < rout:
rmax = rout
return rmax
def make_mask(self, shape):
try:
nrow, ncol = shape
except TypeError:
nrow = ncol = shape
ix = np.arange(ncol) - self.xc
iy = np.arange(nrow) - self.yc
mx, my = np.meshgrid(ix, iy)
rho = np.sqrt(mx**2 + my**2)
mask = (rho <= self.rmax)
return mask
@property
def regions(self):
reg_all = []
for annulus in self.configs["regions"]:
reg_annulus = []
rin, rout = annulus["radius"]
abegin = annulus["angle"]
aend = abegin[1:] + [abegin[0]+360]
npie = len(abegin)
temperature = annulus["temperature"]
abundance = annulus["abundance"]
weight = annulus.get("weight", [1]*npie)
for i in range(npie):
pie = Pie(xc=self.xc, yc=self.yc, rin=rin, rout=rout,
abegin=abegin[i], aend=aend[i])
pie.modelpar("temperature", temperature[i])
pie.modelpar("abundance", abundance[i])
pie.modelpar("weight", weight[i])
reg_annulus.append(pie)
reg_all.append(reg_annulus)
return reg_all
def pixel2world(x, y, wcs):
pix = np.column_stack([x, y])
world = wcs.wcs_pix2world(pix, 0)
ra = world[:, 0]
dec = world[:, 1]
return (ra, dec) # [deg]
def main():
parser = argparse.ArgumentParser(
description="Make/simulate X-ray photon list for Suzaku simulation")
parser.add_argument("config", help="configuration file in YAML format")
args = parser.parse_args()
configs = yaml.load(open(args.config))
logger.info("Load configuration file: %s" % args.config)
logger.info("Configurations:")
pprint(configs)
# Update XSPEC settings
emin, emax = configs["erange"] # [keV]
ebins = configs["ebins"]
xspec.AllModels.setEnergies("%.1f %.1f %d log" % (emin, emax, ebins))
logger.info("Energy range: [%.1f, %.1f] [keV]" % (emin, emax))
logger.info("Energy: %d logarithmic channels" % ebins)
with fits.open(configs["image"]) as f:
header = f[0].header
image = f[0].data
shape = image.shape
logger.info("Image size: %dx%d" % (shape[1], shape[0]))
wcs = WCS(header)
regions = Regions(configs)
reg_all = regions.regions
mask_all = regions.make_mask(shape=shape)
weight_all = np.sum(image[mask_all])
counts_all = configs["counts"]
logger.info("Total counts: %d" % counts_all)
logger.info("nH: %.4f [1e22 cm^-2]" % configs["nh"])
logger.info("Redshift: %.5f" % configs["redshift"])
exposure = configs["exposure"] * 1e3 # [s]
logger.info("Exposure time: %.1f [s]" % exposure)
logger.info("Determining photons counts in each region ...")
counts_sum = 0
for i, annulus in enumerate(reg_all):
for j, pie in enumerate(annulus):
label = "annu#%d/pie#%d" % (i+1, j+1)
mask = pie.make_mask(shape=shape)
pixels = np.sum(mask)
weight = np.sum(image[mask]) * pie.modelpar("weight")
counts = int(counts_all * weight / weight_all)
counts_sum += counts
pie.modelpar("pixels", pixels)
pie.modelpar("counts", counts)
logger.info("%s: %d pixels, %d photons" % (label, pixels, counts))
logger.info("Determined counts sum: %d" % counts_sum)
logger.info("Adjusting total counts -> %d" % counts_all)
for i, annulus in enumerate(reg_all):
for j, pie in enumerate(annulus):
label = "annu#%d/pie#%d" % (i+1, j+1)
counts_old = pie.modelpar("counts")
counts_new = round(counts_old * counts_all / counts_sum)
pie.modelpar("counts", counts_new)
logger.info("%s: adjusted photon counts: %d -> %d" %
(label, counts_old, counts_new))
# Output files
temp_map = np.zeros_like(image)
abund_map = np.zeros_like(image)
counts_map = np.zeros_like(image)
weights_map = np.zeros_like(image)
photonlist = []
for i, annulus in enumerate(reg_all):
for j, pie in enumerate(annulus):
label = "annu#%d/pie#%d" % (i+1, j+1)
pie.set_model(nh=configs["nh"], redshift=configs["redshift"])
mask = pie.make_mask(shape=shape)
temp = pie.modelpar("temperature")
abund = pie.modelpar("abundance")
counts = pie.modelpar("counts")
logger.info("%s: kT=%.2f, Z=%.2f, %d photons" %
(label, temp, abund, counts))
logger.info("%s: sampling photon positions ..." % label)
x, y = pie.rand_position(n=counts)
ra, dec = pixel2world(x, y, wcs=wcs)
logger.info("%s: sampling photon energies ..." % label)
energies = pie.rand_photons(n=counts)
time = np.random.uniform(low=0, high=exposure, size=counts)
photons = np.column_stack([time, energies, ra, dec])
photonlist.append(photons)
logger.info("%s: spatially binning photons ..." % label)
rbins = np.arange(shape[0]+1, dtype=int)
cbins = np.arange(shape[1]+1, dtype=int)
hist2d, __, __ = np.histogram2d(y, x, bins=(rbins, cbins))
counts_map += hist2d
temp_map[mask] = temp
abund_map[mask] = abund
weights_map[mask] = pie.modelpar("weight")
logger.info("Creating output FITS header ...")
header_out = fits.Header()
header_out.extend(wcs.to_header(), update=True)
header_out["CREATOR"] = os.path.basename(sys.argv[0])
header_out.add_history(" ".join(sys.argv))
logger.info("Creating photons table ...")
photons = np.row_stack(photonlist)
photons = photons[photons[:, 0].argsort()] # sort by time (1st column)
hdu = fits.BinTableHDU.from_columns([
fits.Column(name="PHOTON_TIME", format="D", unit="s",
array=photons[:, 0]),
fits.Column(name="PHOTON_ENERGY", format="E", unit="keV",
array=photons[:, 1]),
fits.Column(name="RA", format="E", unit="deg", array=photons[:, 2]),
fits.Column(name="DEC", format="E", unit="deg", array=photons[:, 3]),
], header=header_out)
hdu.name = "PHOTON_LIST"
outfile = configs["outfiles"]["photons_table"]
hdu.writeto(outfile, overwrite=configs["clobber"])
logger.info("Wrote photons table to: %s" % outfile)
data = np.stack([counts_map, weights_map], axis=0)
hdu = fits.PrimaryHDU(data=data, header=header_out)
outfile = configs["outfiles"]["counts_map"]
hdu.writeto(outfile, overwrite=configs["clobber"])
logger.info("Wrote counts/weights map to: %s" % outfile)
#
hdu = fits.PrimaryHDU(data=temp_map, header=header_out)
outfile = configs["outfiles"]["temperature_map"]
hdu.writeto(outfile, overwrite=configs["clobber"])
logger.info("Wrote temperature map to: %s" % outfile)
#
hdu = fits.PrimaryHDU(data=abund_map, header=header_out)
outfile = configs["outfiles"]["abundance_map"]
hdu.writeto(outfile, overwrite=configs["clobber"])
logger.info("Wrote abundance map to: %s" % outfile)
if __name__ == "__main__":
main()
|