aboutsummaryrefslogtreecommitdiffstats
path: root/python/crosstalk_deprojection.py
blob: af8eb6c6fd56e6093fbdf08956661fe9677f9b72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# References:
# [1] Definition of RMF and ARF file formats
#     https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
# [2] CIAO: Auxiliary Response File
#     http://cxc.harvard.edu/ciao/dictionary/arf.html
# [3] CIAO: Redistribution Matrix File
#     http://cxc.harvard.edu/ciao/dictionary/rmf.html
# [4] astropy - FITS format code
#     http://docs.astropy.org/en/stable/io/fits/usage/table.html#column-creation
# [5] XSPEC - Spectral Fitting
#     https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecSpectralFitting.html
# [6] Direct X-ray Spectra Deprojection
#     https://www-xray.ast.cam.ac.uk/papers/dsdeproj/
#     Sanders & Fabian 2007, MNRAS, 381, 1381
#
#
# Weitian LI
# Created: 2016-03-26
# Updated: 2016-04-20
#
# ChangeLog:
# 2016-04-20:
#   * Add argument 'add_history' to some methods (to avoid many duplicated
#     histories due to Monte Carlo)
# 2016-04-19:
#   * Ignore numpy error due to division by zero
#   * Update tool description and sample configuration
#   * Add two other main methods: `main_deprojection()' and `main_crosstalk()'
#   * Add argument 'group_squeeze' to some methods for better performance
#   * Rename from 'correct_crosstalk.py' to 'crosstalk_deprojection.py'
# 2016-04-18:
#   * Implement deprojection function: class Deprojection
#   * Support spectral grouping (supply the grouping specification)
#   * Add grouping, estimate_errors, copy, randomize, etc. methods
#   * Utilize the Monte Carlo techniques to estimate the final spectral errors
#   * Collect all ARFs and RMFs within dictionaries
# 2016-04-06:
#   * Fix `RMF: get_rmfimg()' for XMM EPIC RMF
# 2016-04-02:
#   * Interpolate ARF in order to match the spectral channel energies
#   * Add version and date information
#   * Update documentations
#   * Update header history contents
# 2016-04-01:
#   * Greatly update the documentations (e.g., description, sample config)
#   * Add class `RMF'
#   * Add method `get_energy()' for class `ARF'
#   * Split out class `SpectrumSet' from `Spectrum'
#   * Implement background subtraction
#   * Add config `subtract_bkg' and corresponding argument
#
# XXX/FIXME:
#   * Deprojection: account for ARF differences across different regions
#
# TODO:
#   * Split classes ARF, RMF, Spectrum, and SpectrumSet to a separate module
#

__version__ = "0.5.1"
__date__    = "2016-04-19"


"""
Correct the crosstalk effect of XMM spectra by subtracting the photons
that scattered from the surrounding regions due to the finite PSF, and
by compensating the photons that scattered to the surrounding regions,
according to the generated crosstalk ARFs by SAS `arfgen'.

After the crosstalk effect being corrected, the deprojection is performed
to deproject the crosstalk-corrected spectra to derive the spectra with
both the crosstalk effect and projection effect corrected.


Sample config file (in `ConfigObj' syntax):
-----------------------------------------------------------
# operation mode: deprojection, crosstalk, or both (default)
mode = both
# supply a *groupped* spectrum (from which the "GROUPING" and "QUALITY"
# are used to group all the following spectra)
grouping = spec_grp.pi
# whether to subtract the background before crosstalk correction
subtract_bkg = True
# whether to fix the negative channel values due to spectral subtractions
fix_negative = False
# Monte Carlo times for spectral error estimation
mc_times = 5000
# show progress details and verbose information
verbose = True
# overwrite existing files
clobber = False

# NOTE:
# ONLY specifiy ONE set of projected spectra (i.e., from the same detector
# of one observation), since ALL the following specified spectra will be
# used for the deprojection.

[reg1]
...

[reg2]
outfile = deprojcc_reg2.pi
spec = reg2.pi
arf = reg2.arf
rmf = reg2.rmf
bkg = reg2_bkg.pi
  [[cross_in]]
    [[[in1]]]
    spec = reg1.pi
    arf = reg1.arf
    rmf = reg1.rmf
    bkg = reg1_bkg.pi
    cross_arf = reg_1-2.arf
    [[[in2]]]
    spec = reg3.pi
    arf = reg3.arf
    rmf = reg3.rmf
    bkg = reg3_bkg.pi
    cross_arf = reg_3-2.arf
  [[cross_out]]
  cross_arf = reg_2-1.arf, reg_2-3.arf

[...]
...
-----------------------------------------------------------
"""

WARNING = """
********************************* WARNING ************************************
The generated spectra are substantially modified (e.g., scale, add, subtract),
therefore, take special care when interpretating the fitting results,
especially the metal abundances and normalizations.
******************************************************************************
"""


import sys
import os
import argparse
from datetime import datetime
from copy import copy

import numpy as np
import scipy as sp
import scipy.interpolate
from astropy.io import fits
from configobj import ConfigObj


def group_data(data, grouping):
    """
    Group the data with respect to the supplied `grouping' specification
    (i.e., "GROUPING" columns of a spectrum).  The channel counts of the
    same group are summed up and assigned to the FIRST channel of this
    group, while the OTHRE channels are all set to ZERO.
    """
    data_grp = np.array(data).copy()
    for i in reversed(range(len(data))):
        if grouping[i] == 1:
            # the beginning channel of a group
            continue
        else:
            # other channels of a group
            data_grp[i-1] += data_grp[i]
            data_grp[i]    = 0
    assert np.isclose(sum(data_grp), sum(data))
    return data_grp


class ARF:  # {{{
    """
    Class to handle the ARF (ancillary/auxiliary response file),
    which contains the combined instrumental effective area
    (telescope/filter/detector) and the quantum efficiency (QE) as a
    function of energy averaged over time.
    The effective area is [cm^2], and the QE is [counts/photon]; they are
    multiplied together to create the ARF, resulting in [cm^2 counts/photon].

    **CAVEAT/NOTE**:
    Generally, the "ENERG_LO" and "ENERG_HI" columns of an ARF are *different*
    to the "E_MIN" and "E_MAX" columns of a RMF (which are corresponding
    to the spectrum channel energies).
    For the XMM EPIC *pn* and Chandra *ACIS*, the generated ARF does NOT have
    the same number of data points to that of spectral channels, i.e., the
    "ENERG_LO" and "ENERG_HI" columns of ARF is different to the "E_MIN" and
    "E_MAX" columns of RMF.
    Therefore it is necessary to interpolate and extrapolate the ARF curve
    in order to match the spectrum (or RMF "EBOUNDS" extension).
    As for the XMM EPIC *MOS1* and *MOS2*, the ARF data points match the
    spectral channels, i.e., the energy positions of each ARF data point and
    spectral channel are consistent.  Thus the interpolation is not needed.

    References:
    [1] CIAO: Auxiliary Response File
        http://cxc.harvard.edu/ciao/dictionary/arf.html
    [2] Definition of RMF and ARF file formats
        https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
    """
    filename = None
    fitsobj  = None
    # only consider the "SPECTRUM" extension
    header   = None
    energ_lo = None
    energ_hi = None
    specresp = None
    # function of the interpolated ARF
    f_interp = None
    # energies of the spectral channels
    energy_channel = None
    # spectral channel grouping specification
    grouping       = None
    groupped       = False
    # groupped ARF channels with respect to the grouping
    specresp_grp   = None

    def __init__(self, filename):
        self.filename = filename
        self.fitsobj  = fits.open(filename)
        ext_specresp  = self.fitsobj["SPECRESP"]
        self.header   = ext_specresp.header
        self.energ_lo = ext_specresp.data["ENERG_LO"]
        self.energ_hi = ext_specresp.data["ENERG_HI"]
        self.specresp = ext_specresp.data["SPECRESP"]

    def get_data(self, groupped=False, group_squeeze=False, copy=True):
        if groupped:
            specresp = self.specresp_grp
            if group_squeeze:
                specresp = specresp[self.grouping == 1]
        else:
            specresp = self.specresp
        if copy:
            return specresp.copy()
        else:
            return specresp

    def get_energy(self, mean="geometric"):
        """
        Return the mean energy values of the ARF.

        Arguments:
          * mean: type of the mean energy:
                  + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max)
                  + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max)
        """
        if mean == "geometric":
            energy = np.sqrt(self.energ_lo * self.energ_hi)
        elif mean == "arithmetic":
            energy = 0.5 * (self.energ_lo + self.energ_hi)
        else:
            raise ValueError("Invalid mean type: %s" % mean)
        return energy

    def interpolate(self, x=None, verbose=False):
        """
        Cubic interpolate the ARF curve using `scipy.interpolate'

        If the requested point is outside of the data range, the
        fill value of *zero* is returned.

        Arguments:
          * x: points at which the interpolation to be calculated.

        Return:
          If x is None, then the interpolated function is returned,
          otherwise, the interpolated data are returned.
        """
        if not hasattr(self, "f_interp") or self.f_interp is None:
            energy = self.get_energy()
            arf    = self.get_data(copy=False)
            if verbose:
                print("INFO: interpolating '%s' (this may take a while) ..." \
                        % self.filename, file=sys.stderr)
            f_interp = sp.interpolate.interp1d(energy, arf, kind="cubic",
                    bounds_error=False, fill_value=0.0, assume_sorted=True)
            self.f_interp = f_interp
        if x is not None:
            return self.f_interp(x)
        else:
            return self.f_interp

    def apply_grouping(self, energy_channel, grouping, verbose=False):
        """
        Group the ARF channels (INTERPOLATED with respect to the spectral
        channels) by the supplied grouping specification.

        Arguments:
          * energy_channel: energies of the spectral channel
          * grouping: spectral grouping specification

        Return: `self.specresp_grp'
        """
        if self.groupped:
            return
        if verbose:
            print("INFO: Grouping spectrum '%s' ..." % self.filename,
                    file=sys.stderr)
        self.energy_channel = energy_channel
        self.grouping = grouping
        # interpolate the ARF w.r.t the spectral channel energies
        arf_interp = self.interpolate(x=energy_channel, verbose=verbose)
        self.specresp_grp = group_data(arf_interp, grouping)
        self.groupped = True
# class ARF }}}


class RMF:  # {{{
    """
    Class to handle the RMF (redistribution matrix file),
    which maps from energy space into detector pulse height (or position)
    space.  Since detectors are not perfect, this involves a spreading of
    the observed counts by the detector resolution, which is expressed as
    a matrix multiplication.
    For X-ray spectral analysis, the RMF encodes the probability R(E,p)
    that a detected photon of energy E will be assisgned to a given
    channel value (PHA or PI) of p.

    The standard Legacy format [2] for the RMF uses a binary table in which
    each row contains R(E,p) for a single value of E as a function of p.
    Non-zero sequences of elements of R(E,p) are encoded using a set of
    variable length array columns.  This format is compact but hard to
    manipulate and understand.

    **CAVEAT/NOTE**:
    + See also the above ARF CAVEAT/NOTE.
    + The "EBOUNDS" extension contains the `CHANNEL', `E_MIN' and `E_MAX'
      columns.  This `CHANNEL' is the same as that of a spectrum.  Therefore,
      the energy values determined from the `E_MIN' and `E_MAX' columns are
      used to interpolate and extrapolate the ARF curve.
    + The `ENERG_LO' and `ENERG_HI' columns of the "MATRIX" extension are
      the same as that of a ARF.

    References:
    [1] CIAO: Redistribution Matrix File
        http://cxc.harvard.edu/ciao/dictionary/rmf.html
    [2] Definition of RMF and ARF file formats
        https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
    """
    filename    = None
    fitsobj     = None
    ## extension "MATRIX"
    hdr_matrix  = None
    energ_lo    = None
    energ_hi    = None
    n_grp       = None
    f_chan      = None
    n_chan      = None
    # raw squeezed RMF matrix data
    matrix      = None
    ## extension "EBOUNDS"
    hdr_ebounds = None
    channel     = None
    e_min       = None
    e_max       = None
    ## converted 2D RMF matrix/image from the squeezed binary table
    #  size: len(energ_lo) x len(channel)
    rmfimg      = None

    def __init__(self, filename):
        self.filename    = filename
        self.fitsobj     = fits.open(filename)
        ## "MATRIX" extension
        ext_matrix       = self.fitsobj["MATRIX"]
        self.hdr_matrix  = ext_matrix.header
        self.energ_lo    = ext_matrix.data["ENERG_LO"]
        self.energ_hi    = ext_matrix.data["ENERG_HI"]
        self.n_grp       = ext_matrix.data["N_GRP"]
        self.f_chan      = ext_matrix.data["F_CHAN"]
        self.n_chan      = ext_matrix.data["N_CHAN"]
        self.matrix      = ext_matrix.data["MATRIX"]
        ## "EBOUNDS" extension
        ext_ebounds      = self.fitsobj["EBOUNDS"]
        self.hdr_ebounds = ext_ebounds.header
        self.channel     = ext_ebounds.data["CHANNEL"]
        self.e_min       = ext_ebounds.data["E_MIN"]
        self.e_max       = ext_ebounds.data["E_MAX"]

    def get_energy(self, mean="geometric"):
        """
        Return the mean energy values of the RMF "EBOUNDS".

        Arguments:
          * mean: type of the mean energy:
                  + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max)
                  + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max)
        """
        if mean == "geometric":
            energy = np.sqrt(self.e_min * self.e_max)
        elif mean == "arithmetic":
            energy = 0.5 * (self.e_min + self.e_max)
        else:
            raise ValueError("Invalid mean type: %s" % mean)
        return energy

    def get_rmfimg(self):
        """
        Convert the RMF data in squeezed binary table (standard Legacy format)
        to a 2D image/matrix.
        """
        def _make_rmfimg_row(n_channel, dtype, f_chan, n_chan, mat_row):
            # make sure that `f_chan' and `n_chan' are 1-D numpy array
            f_chan = np.array(f_chan).reshape(-1)
            f_chan -= 1  # FITS indices are 1-based
            n_chan = np.array(n_chan).reshape(-1)
            idx = np.concatenate([ np.arange(f, f+n) \
                    for f, n in zip(f_chan, n_chan) ])
            rmfrow = np.zeros(n_channel, dtype=dtype)
            rmfrow[idx] = mat_row
            return rmfrow
        #
        if self.rmfimg is None:
            # Make the 2D RMF matrix/image
            n_energy  = len(self.energ_lo)
            n_channel = len(self.channel)
            rmf_dtype = self.matrix[0].dtype
            rmfimg = np.zeros(shape=(n_energy, n_channel), dtype=rmf_dtype)
            for i in np.arange(n_energy)[self.n_grp > 0]:
                rmfimg[i, :] = _make_rmfimg_row(n_channel, rmf_dtype,
                        self.f_chan[i], self.n_chan[i], self.matrix[i])
            self.rmfimg = rmfimg
        return self.rmfimg

    def write_rmfimg(self, outfile, clobber=False):
        rmfimg = self.get_rmfimg()
        # merge headers
        header = self.hdr_matrix.copy(strip=True)
        header.extend(self.hdr_ebounds.copy(strip=True))
        outfits = fits.PrimaryHDU(data=rmfimg, header=header)
        outfits.writeto(outfile, checksum=True, clobber=clobber)
# class RMF }}}


class Spectrum:  # {{{
    """
    Class that deals with the X-ray spectrum file (usually *.pi).
    """
    filename  = None
    # FITS object return by `fits.open()'
    fitsobj   = None
    # header of "SPECTRUM" extension
    header    = None
    # "SPECTRUM" extension data
    channel   = None
    # name of the spectrum data column (i.e., type, "COUNTS" or "RATE")
    spec_type = None
    # unit of the spectrum data ("count" for "COUNTS", "count/s" for "RATE")
    spec_unit = None
    # spectrum data
    spec_data = None
    # estimated spectral errors for each channel/group
    spec_err  = None
    # statistical errors for each channel/group
    stat_err  = None
    # grouping and quality
    grouping  = None
    quality   = None
    # whether the spectral data being groupped
    groupped  = False
    # several important keywords
    EXPOSURE  = None
    BACKSCAL  = None
    RESPFILE  = None
    ANCRFILE  = None
    BACKFILE  = None
    # numpy dtype and FITS format code of the spectrum data
    spec_dtype       = None
    spec_fits_format = None
    # output filename for writing the spectrum if no filename provided
    outfile = None

    def __init__(self, filename, outfile=None):
        self.filename = filename
        self.fitsobj  = fits.open(filename)
        ext_spec      = self.fitsobj["SPECTRUM"]
        self.header   = ext_spec.header.copy(strip=True)
        colnames      = ext_spec.columns.names
        if "COUNTS" in colnames:
            self.spec_type = "COUNTS"
        elif "RATE" in colnames:
            self.spec_type = "RATE"
        else:
            raise ValueError("Invalid spectrum file")
        self.channel          = ext_spec.data.columns["CHANNEL"].array
        col_spec_data         = ext_spec.data.columns[self.spec_type]
        self.spec_data        = col_spec_data.array.copy()
        self.spec_unit        = col_spec_data.unit
        self.spec_dtype       = col_spec_data.dtype
        self.spec_fits_format = col_spec_data.format
        # grouping and quality
        if "GROUPING" in colnames:
            self.grouping = ext_spec.data.columns["GROUPING"].array
        if "QUALITY"  in colnames:
            self.quality  = ext_spec.data.columns["QUALITY"].array
        # keywords
        self.EXPOSURE = self.header.get("EXPOSURE")
        self.BACKSCAL = self.header.get("BACKSCAL")
        self.AREASCAL = self.header.get("AREASCAL")
        self.RESPFILE = self.header.get("RESPFILE")
        self.ANCRFILE = self.header.get("ANCRFILE")
        self.BACKFILE = self.header.get("BACKFILE")
        # output filename
        self.outfile  = outfile

    def get_data(self, group_squeeze=False, copy=True):
        """
        Get the spectral data (i.e., self.spec_data).

        Arguments:
          * group_squeeze: whether squeeze the spectral data according to
                           the grouping (i.e., exclude the channels that
                           are not the first channel of the group, which
                           also have value of ZERO).
                           This argument is effective only the grouping
                           being applied.
        """
        if group_squeeze and self.groupped:
            spec_data = self.spec_data[self.grouping == 1]
        else:
            spec_data = self.spec_data
        if copy:
            return spec_data.copy()
        else:
            return spec_data

    def get_channel(self, copy=True):
        if copy:
            return self.channel.copy()
        else:
            return self.channel

    def set_data(self, spec_data, group_squeeze=True):
        """
        Set the spectral data of this spectrum to the supplied data.
        """
        if group_squeeze and self.groupped:
            assert sum(self.grouping == 1) == len(spec_data)
            self.spec_data[self.grouping == 1] = spec_data
        else:
            assert len(self.spec_data) == len(spec_data)
            self.spec_data = spec_data.copy()

    def add_stat_err(self, stat_err, group_squeeze=True):
        """
        Add the "STAT_ERR" column as the statistical errors of each spectral
        group, which are estimated by utilizing the Monte Carlo techniques.
        """
        self.stat_err = np.zeros(self.spec_data.shape,
                dtype=self.spec_data.dtype)
        if group_squeeze and self.groupped:
            assert sum(self.grouping == 1) == len(stat_err)
            self.stat_err[self.grouping == 1] = stat_err
        else:
            assert len(self.stat_err) == len(stat_err)
            self.stat_err = stat_err.copy()
        self.header["POISSERR"] = False

    def apply_grouping(self, grouping=None, quality=None):
        """
        Apply the spectral channel grouping specification to the spectrum.

        NOTE:
        * The spectral data (i.e., self.spec_data) is MODIFIED!
        * The spectral data within the same group are summed up.
        * The self grouping is overwritten if `grouping' is supplied, as well
          as the self quality.
        """
        if grouping is not None:
            self.grouping = grouping
        if quality is not None:
            self.quality = quality
        self.spec_data = group_data(self.spec_data, self.grouping)
        self.groupped = True

    def estimate_errors(self, gehrels=True):
        """
        Estimate the statistical errors of each spectral group (after
        applying grouping) for the source spectrum (and background spectrum).

        If `gehrels=True', the statistical error for a spectral group with
        N photons is given by `1 + sqrt(N + 0.75)'; otherwise, the error
        is given by `sqrt(N)'.

        Results: `self.spec_err'
        """
        eps = 1.0e-10
        if gehrels:
            self.spec_err = 1.0 + np.sqrt(self.spec_data + 0.75)
        else:
            self.spec_err = np.sqrt(self.spec_data)
        # replace the zeros with a very small value (because
        # `np.random.normal' requires `scale' > 0)
        self.spec_err[self.spec_err <= 0.0] = eps

    def copy(self):
        """
        Return a copy of this object, with the `np.ndarray' properties are
        copied.
        """
        new = copy(self)
        for k, v in self.__dict__.items():
            if isinstance(v, np.ndarray):
                setattr(new, k, v.copy())
        return new

    def randomize(self):
        """
        Randomize the spectral data according to the estimated spectral
        group errors by assuming the normal distribution.

        NOTE: this method should be called AFTER the `copy()' method.
        """
        if self.spec_err is None:
            raise ValueError("No valid 'spec_err' presents")
        if self.groupped:
            idx = self.grouping == 1
            self.spec_data[idx] = np.random.normal(self.spec_data[idx],
                    self.spec_err[idx])
        else:
            self.spec_data = np.random.normal(self.spec_data, self.spec_err)
        return self

    def reset_header_keywords(self,
            keywords=["ANCRFILE", "RESPFILE", "BACKFILE"]):
        """
        Reset the keywords to "NONE" to avoid confusion or mistakes.
        """
        for kw in keywords:
            if kw in self.header:
                self.header[kw] = "NONE"

    def write(self, filename=None, clobber=False):
        """
        Create a new "SPECTRUM" table/extension and replace the original
        one, then write to output file.
        """
        if filename is None:
            filename = self.outfile
        columns = [
                fits.Column(name="CHANNEL", format="I", array=self.channel),
                fits.Column(name=self.spec_type, format=self.spec_fits_format,
                            unit=self.spec_unit, array=self.spec_data),
        ]
        if self.grouping is not None:
            columns.append(fits.Column(name="GROUPING",
                                       format="I", array=self.grouping))
        if self.quality  is not None:
            columns.append(fits.Column(name="QUALITY",
                                       format="I", array=self.quality))
        if self.stat_err is not None:
            columns.append(fits.Column(name="STAT_ERR", unit=self.spec_unit,
                                       format=self.spec_fits_format,
                                       array=self.stat_err))
        ext_spec_cols = fits.ColDefs(columns)
        ext_spec = fits.BinTableHDU.from_columns(ext_spec_cols,
                                                 header=self.header)
        self.fitsobj["SPECTRUM"] = ext_spec
        self.fitsobj.writeto(filename, clobber=clobber, checksum=True)
# class Spectrum }}}


class SpectrumSet(Spectrum):  # {{{
    """
    This class handles a set of spectrum, including the source spectrum,
    RMF, ARF, and the background spectrum.

    **NOTE**:
    The "COUNTS" column data are converted from "int32" to "float32",
    since this spectrum will be subtracted/compensated according to the
    ratios of ARFs.
    """
    # ARF object for this spectrum
    arf = None
    # RMF object for this spectrum
    rmf = None
    # background Spectrum object for this spectrum
    bkg = None
    # inner and outer radius of the region from which the spectrum extracted
    radius_inner = None
    radius_outer = None
    # total angular range of the spectral region
    angle = None

    # numpy dtype and FITS format code to which the spectrum data be
    # converted if the data is "COUNTS"
    #_spec_dtype       = np.float32
    #_spec_fits_format = "E"
    _spec_dtype       = np.float64
    _spec_fits_format = "D"

    def __init__(self, filename, outfile=None, arf=None, rmf=None, bkg=None):
        super().__init__(filename, outfile)
        # convert spectrum data type if necessary
        if self.spec_data.dtype != self._spec_dtype:
            self.spec_data        = self.spec_data.astype(self._spec_dtype)
            self.spec_dtype       = self._spec_dtype
            self.spec_fits_format = self._spec_fits_format
        if arf is not None:
            if isinstance(arf, ARF):
                self.arf = arf
            else:
                self.arf = ARF(arf)
        if rmf is not None:
            if isinstance(rmf, RMF):
                self.rmf = rmf
            else:
                self.rmf = RMF(rmf)
        if bkg is not None:
            if isinstance(bkg, Spectrum):
                self.bkg = bkg
            else:
                self.bkg = Spectrum(bkg)
            # convert background spectrum data type if necessary
            if self.bkg.spec_data.dtype != self._spec_dtype:
                self.bkg.spec_data = self.bkg.spec_data.astype(self._spec_dtype)
                self.bkg.spec_dtype = self._spec_dtype
                self.bkg.spec_fits_format = self._spec_fits_format

    def get_energy(self, mean="geometric"):
        """
        Get the energy values of each channel if RMF present.

        NOTE:
        The "E_MIN" and "E_MAX" columns of the RMF is required to calculate
        the spectrum channel energies.
        And the channel energies are generally different to the "ENERG_LO"
        and "ENERG_HI" of the corresponding ARF.
        """
        if self.rmf is None:
            return None
        else:
            return self.rmf.get_energy(mean=mean)

    def get_arf(self, mean="geometric", groupped=True, copy=True):
        """
        Get the interpolated ARF data w.r.t the spectral channel energies
        if the ARF presents.

        Arguments:
          * groupped: (bool) whether to get the groupped ARF

        Return: (groupped) interpolated ARF data
        """
        if self.arf is None:
            return None
        else:
            return self.arf.get_data(groupped=groupped, copy=copy)

    def read_xflt(self):
        """
        Read the XFLT000# keywords from the header, check the validity (e.g.,
        "XFLT0001" should equals "XFLT0002", "XFLT0003" should equals 0).
        Sum all the additional XFLT000# pairs (e.g., ) which describes the
        regions angluar ranges.
        """
        eps = 1.0e-6
        xflt0001 = float(self.header["XFLT0001"])
        xflt0002 = float(self.header["XFLT0002"])
        xflt0003 = float(self.header["XFLT0003"])
        # XFLT000# validity check
        assert np.isclose(xflt0001, xflt0002)
        assert abs(xflt0003) < eps
        # outer radius of the region
        self.radius_outer = xflt0001
        # angular regions
        self.angle = 0.0
        num = 4
        while True:
            try:
                angle_begin = float(self.header["XFLT%04d" % num])
                angle_end   = float(self.header["XFLT%04d" % (num+1)])
                num += 2
            except KeyError:
                break
            self.angle += (angle_end - angle_begin)
        # if NO additional XFLT000# keys exist, assume "annulus" region
        if self.angle < eps:
            self.angle = 360.0

    def scale(self):
        """
        Scale the spectral data (and spectral group errors if present) of
        the source spectrum (and background spectra if present) according
        to the region angular size to make it correspond to the whole annulus
        region (i.e., 360 degrees).

        NOTE: the spectral data and errors (i.e., `self.spec_data', and
        `self.spec_err') is MODIFIED!
        """
        self.spec_data *= (360.0 / self.angle)
        if self.spec_err is not None:
            self.spec_err *= (360.0 / self.angle)
        # also scale the background spectrum if present
        if self.bkg:
            self.bkg.spec_data *= (360.0 / self.angle)
            if self.bkg.spec_err is not None:
                self.bkg.spec_err *= (360.0 / self.angle)

    def apply_grouping(self, grouping=None, quality=None, verbose=False):
        """
        Apply the spectral channel grouping specification to the source
        spectrum, the ARF (which is used during the later spectral
        manipulations), and the background spectrum (if presents).

        NOTE:
        * The spectral data (i.e., self.spec_data) is MODIFIED!
        * The spectral data within the same group are summed up.
        * The self grouping is overwritten if `grouping' is supplied, as well
          as the self quality.
        """
        super().apply_grouping(grouping=grouping, quality=quality)
        # also group the ARF accordingly
        self.arf.apply_grouping(energy_channel=self.get_energy(),
                                grouping=self.grouping, verbose=verbose)
        # group the background spectrum if present
        if self.bkg:
            self.bkg.spec_data = group_data(self.bkg.spec_data, self.grouping)

    def estimate_errors(self, gehrels=True):
        """
        Estimate the statistical errors of each spectral group (after
        applying grouping) for the source spectrum (and background spectrum).

        If `gehrels=True', the statistical error for a spectral group with
        N photons is given by `1 + sqrt(N + 0.75)'; otherwise, the error
        is given by `sqrt(N)'.

        Results: `self.spec_err' (and `self.bkg.spec_err')
        """
        super().estimate_errors(gehrels=gehrels)
        eps = 1.0e-10
        # estimate the errors for background spectrum if present
        if self.bkg:
            if gehrels:
                self.bkg.spec_err = 1.0 + np.sqrt(self.bkg.spec_data + 0.75)
            else:
                self.bkg.spec_err = np.sqrt(self.bkg.spec_data)
            self.bkg.spec_err[self.bkg.spec_err <= 0.0] = eps

    def subtract_bkg(self, inplace=True, add_history=False, verbose=False):
        """
        Subtract the background contribution from the source spectrum.
        The `EXPOSURE' and `BACKSCAL' values are required to calculate
        the fraction/ratio for the background subtraction.

        Arguments:
          * inplace: whether replace the `spec_data' with the background-
                     subtracted spectrum data; If True, the attribute
                     `spec_bkg_subtracted' is also set to `True' when
                     the subtraction finished.
                     The keywords "BACKSCAL" and "AREASCAL" are set to 1.0.

        Return:
          background-subtracted spectrum data
        """
        ratio = (self.EXPOSURE / self.bkg.EXPOSURE) * \
                (self.BACKSCAL / self.bkg.BACKSCAL) * \
                (self.AREASCAL / self.bkg.AREASCAL)
        operation = "  SUBTRACT_BACKGROUND: %s - %s * %s" % \
                (self.filename, ratio, self.bkg.filename)
        if verbose:
            print(operation, file=sys.stderr)
        spec_data_subbkg = self.spec_data - ratio * self.bkg.get_data()
        if inplace:
            self.spec_data = spec_data_subbkg
            self.spec_bkg_subtracted = True
            self.BACKSCAL = 1.0
            self.AREASCAL = 1.0
            # also record history
            if add_history:
                self.header.add_history(operation)
        return spec_data_subbkg

    def subtract(self, spectrumset, cross_arf, groupped=False,
            group_squeeze=False, add_history=False, verbose=False):
        """
        Subtract the photons that originate from the surrounding regions
        but were scattered into this spectrum due to the finite PSF.

        The background of this spectrum and the given spectrum should
        both be subtracted before applying this subtraction for crosstalk
        correction, as well as the below `compensate()' procedure.

        NOTE:
        1. The crosstalk ARF must be provided, since the `spectrumset.arf'
           is required to be its ARF without taking crosstalk into account:
               spec1_new = spec1 - spec2 * (cross_arf_2_to_1 / arf2)
        2. The ARF are interpolated to match the energies of spetral channels.
        """
        operation = "  SUBTRACT: %s - (%s/%s) * %s" % (self.filename,
                cross_arf.filename, spectrumset.arf.filename,
                spectrumset.filename)
        if verbose:
            print(operation, file=sys.stderr)
        energy = self.get_energy()
        if groupped:
            spectrumset.arf.apply_grouping(energy_channel=energy,
                    grouping=self.grouping, verbose=verbose)
            cross_arf.apply_grouping(energy_channel=energy,
                    grouping=self.grouping, verbose=verbose)
            arfresp_spec  = spectrumset.arf.get_data(groupped=True,
                    group_squeeze=group_squeeze)
            arfresp_cross = cross_arf.get_data(groupped=True,
                    group_squeeze=group_squeeze)
        else:
            arfresp_spec  = spectrumset.arf.interpolate(x=energy,
                    verbose=verbose)
            arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose)
        with np.errstate(divide="ignore", invalid="ignore"):
            arf_ratio = arfresp_cross / arfresp_spec
            # fix nan/inf values due to division by zero
            arf_ratio[ ~ np.isfinite(arf_ratio) ] = 0.0
        spec_data = self.get_data(group_squeeze=group_squeeze) - \
                spectrumset.get_data(group_squeeze=group_squeeze)*arf_ratio
        self.set_data(spec_data, group_squeeze=group_squeeze)
        # record history
        if add_history:
            self.header.add_history(operation)

    def compensate(self, cross_arf, groupped=False, group_squeeze=False,
            add_history=False, verbose=False):
        """
        Compensate the photons that originate from this regions but were
        scattered into the surrounding regions due to the finite PSF.

        formula:
            spec1_new = spec1 + spec1 * (cross_arf_1_to_2 / arf1)
        """
        operation = "  COMPENSATE: %s + (%s/%s) * %s" % (self.filename,
                cross_arf.filename, self.arf.filename, self.filename)
        if verbose:
            print(operation, file=sys.stderr)
        energy = self.get_energy()
        if groupped:
            cross_arf.apply_grouping(energy_channel=energy,
                    grouping=self.grouping, verbose=verbose)
            arfresp_this  = self.arf.get_data(groupped=True,
                    group_squeeze=group_squeeze)
            arfresp_cross = cross_arf.get_data(groupped=True,
                    group_squeeze=group_squeeze)
        else:
            arfresp_this  = self.arf.interpolate(x=energy, verbose=verbose)
            arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose)
        with np.errstate(divide="ignore", invalid="ignore"):
            arf_ratio = arfresp_cross / arfresp_this
            # fix nan/inf values due to division by zero
            arf_ratio[ ~ np.isfinite(arf_ratio) ] = 0.0
        spec_data = self.get_data(group_squeeze=group_squeeze) + \
                self.get_data(group_squeeze=group_squeeze) * arf_ratio
        self.set_data(spec_data, group_squeeze=group_squeeze)
        # record history
        if add_history:
            self.header.add_history(operation)

    def fix_negative(self, add_history=False, verbose=False):
        """
        The subtractions may lead to negative counts, it may be necessary
        to fix these channels with negative values.
        """
        neg_counts = self.spec_data < 0
        N = len(neg_counts)
        neg_channels = np.arange(N, dtype=np.int)[neg_counts]
        if len(neg_channels) > 0:
            print("WARNING: %d channels have NEGATIVE counts" % \
                    len(neg_channels), file=sys.stderr)
        i = 0
        while len(neg_channels) > 0:
            i += 1
            if verbose:
                if i == 1:
                    print("*** Fixing negative channels: iter %d..." % i,
                            end="", file=sys.stderr)
                else:
                    print("%d..." % i, end="", file=sys.stderr)
            for ch in neg_channels:
                neg_val = self.spec_data[ch]
                if ch < N-2:
                    self.spec_data[ch] = 0
                    self.spec_data[(ch+1):(ch+3)] -= 0.5 * np.abs(neg_val)
                else:
                    # just set to zero if it is the last 2 channels
                    self.spec_data[ch] = 0
            # update negative channels indices
            neg_counts = self.spec_data < 0
            neg_channels = np.arange(N, dtype=np.int)[neg_counts]
        if i > 0:
            print("FIXED!", file=sys.stderr)
            # record history
            if add_history:
                self.header.add_history("  FIXED NEGATIVE CHANNELS")

    def set_radius_inner(self, radius_inner):
        """
        Set the inner radius of the spectral region.
        """
        assert radius_inner < self.radius_outer
        self.radius_inner = radius_inner

    def copy(self):
        """
        Return a copy of this object.
        """
        new = super().copy()
        if self.bkg:
            new.bkg = self.bkg.copy()
        return new

    def randomize(self):
        """
        Randomize the source (and background if present) spectral data
        according to the estimated spectral group errors by assuming the
        normal distribution.

        NOTE: this method should be called AFTER the `copy()' method.
        """
        super().randomize()
        if self.bkg:
            self.bkg.spec_data = np.random.normal(self.bkg.spec_data,
                                                  self.bkg.spec_err)
            self.bkg.spec_data[self.grouping == -1] = 0.0
        return self
# class SpectrumSet }}}


class Crosstalk:  # {{{
    """
    XMM-Newton PSF Crosstalk effect correction.
    """
    # `SpectrumSet' object for the spectrum to be corrected
    spectrumset = None
    # NOTE/XXX: do NOT use list (e.g., []) here, otherwise, all the
    #           instances will share these list properties.
    # `SpectrumSet' and `ARF' objects corresponding to the spectra from
    # which the photons were scattered into this spectrum.
    cross_in_specset = None
    cross_in_arf     = None
    # `ARF' objects corresponding to the regions to which the photons of
    # this spectrum were scattered into.
    cross_out_arf = None
    # grouping specification and quality data
    grouping = None
    quality = None
    # whether the spectrum is groupped
    groupped = False

    def __init__(self, config, arf_dict={}, rmf_dict={},
            grouping=None, quality=None):
        """
        Arguments:
          * config: a section of the whole config file (`ConfigObj' object)
        """
        self.cross_in_specset = []
        self.cross_in_arf     = []
        self.cross_out_arf    = []
        # this spectrum to be corrected
        self.spectrumset = SpectrumSet(filename=config["spec"],
                outfile=config["outfile"],
                arf=arf_dict.get(config["arf"], config["arf"]),
                rmf=rmf_dict.get(config.get("rmf"), config.get("rmf")),
                bkg=config.get("bkg"))
        # spectra and cross arf from which photons were scattered in
        for reg_in in config["cross_in"].values():
            specset = SpectrumSet(filename=reg_in["spec"],
                    arf=arf_dict.get(reg_in["arf"], reg_in["arf"]),
                    rmf=rmf_dict.get(reg_in.get("rmf"), reg_in.get("rmf")),
                    bkg=reg_in.get("bkg"))
            self.cross_in_specset.append(specset)
            self.cross_in_arf.append(arf_dict.get(reg_in["cross_arf"],
                                                  ARF(reg_in["cross_arf"])))
        # regions into which the photons of this spectrum were scattered into
        if "cross_out" in config.sections:
            cross_arf = config["cross_out"].as_list("cross_arf")
            for arffile in cross_arf:
                self.cross_out_arf.append(arf_dict.get(arffile, ARF(arffile)))
        # grouping and quality
        self.grouping = grouping
        self.quality = quality

    def apply_grouping(self, verbose=False):
        self.spectrumset.apply_grouping(grouping=self.grouping,
                quality=self.quality, verbose=verbose)
        # also group the related surrounding spectra
        for specset in self.cross_in_specset:
            specset.apply_grouping(grouping=self.grouping,
                quality=self.quality, verbose=verbose)
        self.groupped = True

    def estimate_errors(self, gehrels=True, verbose=False):
        if verbose:
            print("INFO: Estimating spectral errors ...")
        self.spectrumset.estimate_errors(gehrels=gehrels)
        # also estimate errors for the related surrounding spectra
        for specset in self.cross_in_specset:
            specset.estimate_errors(gehrels=gehrels)

    def do_correction(self, subtract_bkg=True, fix_negative=False,
            group_squeeze=True, add_history=False, verbose=False):
        """
        Perform the crosstalk correction.  The background contribution
        for each spectrum is subtracted first if `subtract_bkg' is True.
        The basic correction procedures are recorded to the header.
        """
        if add_history:
            self.spectrumset.header.add_history("Crosstalk Correction BEGIN")
            self.spectrumset.header.add_history("  TOOL: %s (v%s) @ %s" % (\
                    os.path.basename(sys.argv[0]), __version__,
                    datetime.utcnow().isoformat()))
        # background subtraction
        if subtract_bkg:
            if verbose:
                print("INFO: subtract background ...", file=sys.stderr)
            self.spectrumset.subtract_bkg(inplace=True,
                    add_history=add_history, verbose=verbose)
            # also apply background subtraction to the surrounding spectra
            for specset in self.cross_in_specset:
                specset.subtract_bkg(inplace=True,
                        add_history=add_history, verbose=verbose)
        # subtractions
        if verbose:
            print("INFO: apply subtractions ...", file=sys.stderr)
        for specset, cross_arf in zip(self.cross_in_specset,
                self.cross_in_arf):
            self.spectrumset.subtract(spectrumset=specset,
                    cross_arf=cross_arf, groupped=self.groupped,
                    group_squeeze=group_squeeze, add_history=add_history,
                    verbose=verbose)
        # compensations
        if verbose:
            print("INFO: apply compensations ...", file=sys.stderr)
        for cross_arf in self.cross_out_arf:
            self.spectrumset.compensate(cross_arf=cross_arf,
                    groupped=self.groupped, group_squeeze=group_squeeze,
                    add_history=add_history, verbose=verbose)
        # fix negative values in channels
        if fix_negative:
            if verbose:
                print("INFO: fix negative channel values ...", file=sys.stderr)
            self.spectrumset.fix_negative(add_history=add_history,
                    verbose=verbose)
        if add_history:
            self.spectrumset.header.add_history("END Crosstalk Correction")
        # reset header keywords
        self.spectrumset.reset_header_keywords(
                keywords=["ANCRFILE", "BACKFILE"])

    def copy(self):
        new = copy(self)
        # properly handle the copy of spectrumsets
        new.spectrumset = self.spectrumset.copy()
        new.cross_in_specset = [ specset.copy() \
                for specset in self.cross_in_specset ]
        return new

    def randomize(self):
        self.spectrumset.randomize()
        for specset in self.cross_in_specset:
            specset.randomize()
        return self

    def get_spectrum(self, copy=True):
        if copy:
            return self.spectrumset.copy()
        else:
            return self.spectrumset

    def write(self, filename=None, clobber=False):
        self.spectrumset.write(filename=filename, clobber=clobber)
# class Crosstalk }}}


class Deprojection:  # {{{
    """
    Perform the deprojection on a set of PROJECTED spectra with the
    assumption of spherical symmetry of the source object, and produce
    the DEPROJECTED spectra.

    NOTE:
    * Assumption of the spherical symmetry
    * Background should be subtracted before deprojection
    * ARF differences of different regions are taken into account

    Reference & Credit:
    [1] Direct X-ray Spectra Deprojection
        https://www-xray.ast.cam.ac.uk/papers/dsdeproj/
        Sanders & Fabian 2007, MNRAS, 381, 1381
    """
    spectra  = None
    grouping = None
    quality  = None

    def __init__(self, spectra, grouping=None, quality=None, verbose=False):
        """
        Arguments:
          * spectra: a set of spectra from the inner-most to the outer-most
                     regions (e.g., spectra after correcting crosstalk effect)
          * grouping: grouping specification for all the spectra
          * quality: quality column for the spectra
        """
        self.spectra = []
        for spec in spectra:
            if not isinstance(spec, SpectrumSet):
                raise ValueError("Not a 'SpectrumSet' object")
            spec.read_xflt()
            self.spectra.append(spec)
        self.spectra  = spectra
        self.grouping = grouping
        self.quality  = quality
        # sort spectra by `radius_outer'
        self.spectra.sort(key=lambda x: x.radius_outer)
        # set the inner radii
        radii_inner = [0.0] + [ x.radius_outer for x in self.spectra[:-1] ]
        for spec, rin in zip(self.spectra, radii_inner):
            spec.set_radius_inner(rin)
            if verbose:
                print("Deprojection: loaded spectrum: radius: (%s, %s)" % \
                        (spec.radius_inner, spec.radius_outer),
                        file=sys.stderr)
        # check EXPOSURE validity (all spectra must have the same exposures)
        exposures = [ spec.EXPOSURE for spec in self.spectra ]
        assert np.allclose(exposures[:-1], exposures[1:])

    def subtract_bkg(self, verbose=True):
        for spec in self.spectra:
            if not spec.bkg:
                raise ValueError("Spectrum '%s' has NO background" % \
                        spec.filename)
            spec.subtract_bkg(inplace=True, verbose=verbose)

    def apply_grouping(self, verbose=False):
        for spec in self.spectra:
            spec.apply_grouping(grouping=self.grouping, quality=self.quality,
                    verbose=verbose)

    def estimate_errors(self, gehrels=True):
        for spec in self.spectra:
            spec.estimate_errors(gehrels=gehrels)

    def scale(self):
        """
        Scale the spectral data according to the region angular size.
        """
        for spec in self.spectra:
            spec.scale()

    def do_deprojection(self, group_squeeze=True,
            add_history=False, verbose=False):
        #
        # TODO/XXX: How to apply ARF correction here???
        #
        num_spec = len(self.spectra)
        tmp_spec_data = self.spectra[0].get_data(group_squeeze=group_squeeze)
        spec_shape = tmp_spec_data.shape
        spec_dtype = tmp_spec_data.dtype
        spec_per_vol = [None] * num_spec
        #
        for shellnum in reversed(range(num_spec)):
            if verbose:
                print("DEPROJECTION: deprojecting shell %d ..." % shellnum,
                        file=sys.stderr)
            spec = self.spectra[shellnum]
            # calculate projected spectrum of outlying shells
            proj_spec = np.zeros(spec_shape, spec_dtype)
            for outer in range(shellnum+1, num_spec):
                vol = self.projected_volume(
                        r1=self.spectra[outer].radius_inner,
                        r2=self.spectra[outer].radius_outer,
                        R1=spec.radius_inner,
                        R2=spec.radius_outer)
                proj_spec += spec_per_vol[outer] * vol
            #
            this_spec = spec.get_data(group_squeeze=group_squeeze, copy=True)
            deproj_spec = this_spec - proj_spec
            # calculate the volume that this spectrum is from
            this_vol = self.projected_volume(
                    r1=spec.radius_inner, r2=spec.radius_outer,
                    R1=spec.radius_inner, R2=spec.radius_outer)
            # calculate the spectral data per unit volume
            spec_per_vol[shellnum] = deproj_spec / this_vol
        # set the spectral data to these deprojected values
        self.set_spec_data(spec_per_vol, group_squeeze=group_squeeze)
        # add history to header
        if add_history:
            self.add_history()

    def get_spec_data(self, group_squeeze=True, copy=True):
        """
        Extract the spectral data of each spectrum after deprojection
        performed.
        """
        return [ spec.get_data(group_squeeze=group_squeeze, copy=copy)
                 for spec in self.spectra ]

    def set_spec_data(self, spec_data, group_squeeze=True):
        """
        Set `spec_data' for each spectrum to the deprojected spectral data.
        """
        assert len(spec_data) == len(self.spectra)
        for spec, data in zip(self.spectra, spec_data):
            spec.set_data(data, group_squeeze=group_squeeze)

    def add_history(self):
        """
        Append a brief history about this tool to the header.
        """
        history = "Deprojected by %s (v%s) @ %s" % (
                os.path.basename(sys.argv[0]), __version__,
                datetime.utcnow().isoformat())
        for spec in self.spectra:
            spec.header.add_history(history)

    def add_stat_err(self, stat_err, group_squeeze=True):
        """
        Add the "STAT_ERR" column to each spectrum.
        """
        assert len(stat_err) == len(self.spectra)
        for spec, err in zip(self.spectra, stat_err):
            spec.add_stat_err(err, group_squeeze=group_squeeze)

    def write(self, filenames=[], clobber=False):
        """
        Write the deprojected spectra to output file.
        """
        if filenames == []:
            filenames = [ spec.outfile for spec in self.spectra ]
        for spec, outfile in zip(self.spectra, filenames):
            spec.write(filename=outfile, clobber=clobber)

    @staticmethod
    def projected_volume(r1, r2, R1, R2):
        """
        Calculate the projected volume of a spherical shell of radii r1 -> r2
        onto an annulus on the sky of radius R1 -> R2.

        This volume is the integral:
          Int(R=R1,R2) Int(x=sqrt(r1^2-R^2),sqrt(r2^2-R^2)) 2*pi*R dx dR
          =
          Int(R=R1,R2) 2*pi*R * (sqrt(r2^2-R^2) - sqrt(r1^2-R^2)) dR

        Note that the above integral is only half the total volume
        (i.e., front only).
        """
        def sqrt_trunc(x):
            if x > 0:
                return np.sqrt(x)
            else:
                return 0.0
        #
        p1 = sqrt_trunc(r1**2 - R2**2)
        p2 = sqrt_trunc(r1**2 - R1**2)
        p3 = sqrt_trunc(r2**2 - R2**2)
        p4 = sqrt_trunc(r2**2 - R1**2)
        return 2.0 * (2.0/3.0) * np.pi * ((p1**3 - p2**3) + (p4**3 - p3**3))
# class Deprojection }}}


# Helper functions {{{
def calc_median_errors(results):
    """
    Calculate the median and errors for the spectral data gathered
    through Monte Carlo simulations.

    TODO: investigate the errors calculation approach used here!
    """
    results = np.array(results)
    # `results' now has shape: (mc_times, num_spec, num_channel)
    # sort by the Monte Carlo simulation axis
    results.sort(0)
    mc_times = results.shape[0]
    medians  = results[ int(mc_times * 0.5) ]
    lowerpcs = results[ int(mc_times * 0.1585) ]
    upperpcs = results[ int(mc_times * 0.8415) ]
    errors   = np.sqrt(0.5 * ((medians-lowerpcs)**2 + (upperpcs-medians)**2))
    return (medians, errors)


def set_argument(name, default, cmdargs, config):
    value = default
    if name in config.keys():
        value = config.as_bool(name)
    value_cmd = vars(cmdargs)[name]
    if value_cmd != default:
        value = value_cmd  # command arguments overwrite others
    return value
# helper functions }}}


# main routine {{{
def main(config, subtract_bkg, fix_negative, mc_times,
        verbose=False, clobber=False):
    # collect ARFs and RMFs into dictionaries (avoid interpolation every time)
    arf_files = set()
    rmf_files = set()
    for region in config.sections:
        config_reg = config[region]
        arf_files.add(config_reg.get("arf"))
        rmf_files.add(config_reg.get("rmf"))
        for reg_in in config_reg["cross_in"].values():
            arf_files.add(reg_in.get("arf"))
            arf_files.add(reg_in.get("cross_arf"))
        if "cross_out" in config_reg.sections:
            for arf in config_reg["cross_out"].as_list("cross_arf"):
                arf_files.add(arf)
    arf_files = arf_files - set([None])
    arf_dict  = { arf: ARF(arf) for arf in arf_files }
    rmf_files = rmf_files - set([None])
    rmf_dict  = { rmf: RMF(rmf) for rmf in rmf_files }
    if verbose:
        print("INFO: arf_files:", arf_files, file=sys.stderr)
        print("INFO: rmf_files:", rmf_files, file=sys.stderr)

    # get the GROUPING and QUALITY data
    grouping_fits = fits.open(config["grouping"])
    grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array
    quality  = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array
    # squeeze the groupped spectral data, etc.
    group_squeeze = True

    # crosstalk objects (BEFORE background subtraction)
    crosstalks_cleancopy = []
    # crosstalk-corrected spectra
    cc_spectra = []

    # correct crosstalk effects for each region first
    for region in config.sections:
        if verbose:
            print("INFO: processing '%s' ..." % region, file=sys.stderr)
        crosstalk = Crosstalk(config.get(region),
                arf_dict=arf_dict, rmf_dict=rmf_dict,
                grouping=grouping, quality=quality)
        crosstalk.apply_grouping(verbose=verbose)
        crosstalk.estimate_errors(verbose=verbose)
        # keep a (almost) clean copy of the crosstalk object
        crosstalks_cleancopy.append(crosstalk.copy())
        if verbose:
            print("INFO: doing crosstalk correction ...", file=sys.stderr)
        crosstalk.do_correction(subtract_bkg=subtract_bkg,
                fix_negative=fix_negative, group_squeeze=group_squeeze,
                add_history=True, verbose=verbose)
        cc_spectra.append(crosstalk.get_spectrum(copy=True))

    # load back the crosstalk-corrected spectra for deprojection
    if verbose:
        print("INFO: preparing spectra for deprojection ...", file=sys.stderr)
    deprojection = Deprojection(spectra=cc_spectra, grouping=grouping,
            quality=quality, verbose=verbose)
    if verbose:
        print("INFO: scaling spectra according the region angular size...",
                file=sys.stderr)
    deprojection.scale()
    if verbose:
        print("INFO: doing deprojection ...", file=sys.stderr)
    deprojection.do_deprojection(add_history=True, verbose=verbose)
    deproj_results = [ deprojection.get_spec_data(
        group_squeeze=group_squeeze, copy=True) ]

    # Monte Carlo for spectral group error estimation
    print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \
            mc_times, file=sys.stderr)
    for i in range(mc_times):
        if i % 100 == 0:
            print("%d..." % i, end="", flush=True, file=sys.stderr)
        # correct crosstalk effects
        cc_spectra_copy = []
        for crosstalk in crosstalks_cleancopy:
            # copy and randomize
            crosstalk_copy = crosstalk.copy().randomize()
            crosstalk_copy.do_correction(subtract_bkg=subtract_bkg,
                    fix_negative=fix_negative, group_squeeze=group_squeeze,
                    add_history=False, verbose=False)
            cc_spectra_copy.append(crosstalk_copy.get_spectrum(copy=True))
        # deproject spectra
        deprojection_copy = Deprojection(spectra=cc_spectra_copy,
                grouping=grouping, quality=quality, verbose=False)
        deprojection_copy.scale()
        deprojection_copy.do_deprojection(add_history=False, verbose=False)
        deproj_results.append(deprojection_copy.get_spec_data(
            group_squeeze=group_squeeze, copy=True))
    print("DONE!", flush=True, file=sys.stderr)

    if verbose:
        print("INFO: Calculating the median and errors for each spectrum ...",
                file=sys.stderr)
    medians, errors = calc_median_errors(deproj_results)
    deprojection.set_spec_data(medians, group_squeeze=group_squeeze)
    deprojection.add_stat_err(errors, group_squeeze=group_squeeze)
    if verbose:
        print("INFO: Writing the crosstalk-corrected and deprojected " + \
                "spectra with estimated statistical errors ...",
                file=sys.stderr)
    deprojection.write(clobber=clobber)
# main routine }}}


# main_deprojection routine {{{
def main_deprojection(config, mc_times, verbose=False, clobber=False):
    """
    Only perform the spectral deprojection.
    """
    # collect ARFs and RMFs into dictionaries (avoid interpolation every time)
    arf_files = set()
    rmf_files = set()
    for region in config.sections:
        config_reg = config[region]
        arf_files.add(config_reg.get("arf"))
        rmf_files.add(config_reg.get("rmf"))
    arf_files = arf_files - set([None])
    arf_dict  = { arf: ARF(arf) for arf in arf_files }
    rmf_files = rmf_files - set([None])
    rmf_dict  = { rmf: RMF(rmf) for rmf in rmf_files }
    if verbose:
        print("INFO: arf_files:", arf_files, file=sys.stderr)
        print("INFO: rmf_files:", rmf_files, file=sys.stderr)

    # get the GROUPING and QUALITY data
    grouping_fits = fits.open(config["grouping"])
    grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array
    quality  = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array
    # squeeze the groupped spectral data, etc.
    group_squeeze = True

    # load spectra for deprojection
    if verbose:
        print("INFO: preparing spectra for deprojection ...", file=sys.stderr)
    proj_spectra = []
    for region in config.sections:
        config_reg = config[region]
        specset = SpectrumSet(filename=config_reg["spec"],
                outfile=config_reg["outfile"],
                arf=arf_dict.get(config_reg["arf"], config_reg["arf"]),
                rmf=rmf_dict.get(config_reg["rmf"], config_reg["rmf"]),
                bkg=config_reg["bkg"])
        proj_spectra.append(specset)

    deprojection = Deprojection(spectra=proj_spectra, grouping=grouping,
            quality=quality, verbose=verbose)
    deprojection.apply_grouping(verbose=verbose)
    deprojection.estimate_errors()
    if verbose:
        print("INFO: scaling spectra according the region angular size ...",
                file=sys.stderr)
    deprojection.scale()

    # keep a (almost) clean copy of the input projected spectra
    proj_spectra_cleancopy = [ spec.copy() for spec in proj_spectra ]

    if verbose:
        print("INFO: subtract the background ...", file=sys.stderr)
    deprojection.subtract_bkg(verbose=verbose)
    if verbose:
        print("INFO: doing deprojection ...", file=sys.stderr)
    deprojection.do_deprojection(add_history=True, verbose=verbose)
    deproj_results = [ deprojection.get_spec_data(
        group_squeeze=group_squeeze, copy=True) ]

    # Monte Carlo for spectral group error estimation
    print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \
            mc_times, file=sys.stderr)
    for i in range(mc_times):
        if i % 100 == 0:
            print("%d..." % i, end="", flush=True, file=sys.stderr)
        # copy and randomize the input projected spectra
        proj_spectra_copy = [ spec.copy().randomize()
                              for spec in proj_spectra_cleancopy ]
        # deproject spectra
        deprojection_copy = Deprojection(spectra=proj_spectra_copy,
                grouping=grouping, quality=quality, verbose=False)
        deprojection_copy.subtract_bkg(verbose=False)
        deprojection_copy.do_deprojection(add_history=False, verbose=False)
        deproj_results.append(deprojection_copy.get_spec_data(
            group_squeeze=group_squeeze, copy=True))
    print("DONE!", flush=True, file=sys.stderr)

    if verbose:
        print("INFO: Calculating the median and errors for each spectrum ...",
                file=sys.stderr)
    medians, errors = calc_median_errors(deproj_results)
    deprojection.set_spec_data(medians, group_squeeze=group_squeeze)
    deprojection.add_stat_err(errors, group_squeeze=group_squeeze)
    if verbose:
        print("INFO: Writing the deprojected spectra " + \
                "with estimated statistical errors ...",
                file=sys.stderr)
    deprojection.write(clobber=clobber)
# main_deprojection routine }}}


# main_crosstalk routine {{{
def main_crosstalk(config, subtract_bkg, fix_negative, mc_times,
        verbose=False, clobber=False):
    """
    Only perform the crosstalk correction.
    """
    # collect ARFs and RMFs into dictionaries (avoid interpolation every time)
    arf_files = set()
    rmf_files = set()
    for region in config.sections:
        config_reg = config[region]
        arf_files.add(config_reg.get("arf"))
        rmf_files.add(config_reg.get("rmf"))
        for reg_in in config_reg["cross_in"].values():
            arf_files.add(reg_in.get("arf"))
            arf_files.add(reg_in.get("cross_arf"))
        if "cross_out" in config_reg.sections:
            for arf in config_reg["cross_out"].as_list("cross_arf"):
                arf_files.add(arf)
    arf_files = arf_files - set([None])
    arf_dict  = { arf: ARF(arf) for arf in arf_files }
    rmf_files = rmf_files - set([None])
    rmf_dict  = { rmf: RMF(rmf) for rmf in rmf_files }
    if verbose:
        print("INFO: arf_files:", arf_files, file=sys.stderr)
        print("INFO: rmf_files:", rmf_files, file=sys.stderr)

    # get the GROUPING and QUALITY data
    if "grouping" in config.keys():
        grouping_fits = fits.open(config["grouping"])
        grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array
        quality  = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array
        group_squeeze = True
    else:
        grouping = None
        quality  = None
        group_squeeze = False

    # crosstalk objects (BEFORE background subtraction)
    crosstalks_cleancopy = []
    # crosstalk-corrected spectra
    cc_spectra = []

    # correct crosstalk effects for each region first
    for region in config.sections:
        if verbose:
            print("INFO: processing '%s' ..." % region, file=sys.stderr)
        crosstalk = Crosstalk(config.get(region),
                arf_dict=arf_dict, rmf_dict=rmf_dict,
                grouping=grouping, quality=quality)
        if grouping is not None:
            crosstalk.apply_grouping(verbose=verbose)
        crosstalk.estimate_errors(verbose=verbose)
        # keep a (almost) clean copy of the crosstalk object
        crosstalks_cleancopy.append(crosstalk.copy())
        if verbose:
            print("INFO: doing crosstalk correction ...", file=sys.stderr)
        crosstalk.do_correction(subtract_bkg=subtract_bkg,
                fix_negative=fix_negative, group_squeeze=group_squeeze,
                add_history=True, verbose=verbose)
        cc_spectra.append(crosstalk.get_spectrum(copy=True))

    # spectral data of the crosstalk-corrected spectra
    cc_results = []
    cc_results.append([ spec.get_data(group_squeeze=group_squeeze, copy=True)
                        for spec in cc_spectra ])

    # Monte Carlo for spectral group error estimation
    print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \
            mc_times, file=sys.stderr)
    for i in range(mc_times):
        if i % 100 == 0:
            print("%d..." % i, end="", flush=True, file=sys.stderr)
        # correct crosstalk effects
        cc_spectra_copy = []
        for crosstalk in crosstalks_cleancopy:
            # copy and randomize
            crosstalk_copy = crosstalk.copy().randomize()
            crosstalk_copy.do_correction(subtract_bkg=subtract_bkg,
                    fix_negative=fix_negative, group_squeeze=group_squeeze,
                    add_history=False, verbose=False)
            cc_spectra_copy.append(crosstalk_copy.get_spectrum(copy=True))
        cc_results.append([ spec.get_data(group_squeeze=group_squeeze,
                                          copy=True)
                            for spec in cc_spectra_copy ])
    print("DONE!", flush=True, file=sys.stderr)

    if verbose:
        print("INFO: Calculating the median and errors for each spectrum ...",
                file=sys.stderr)
    medians, errors = calc_median_errors(cc_results)
    if verbose:
        print("INFO: Writing the crosstalk-corrected spectra " + \
                "with estimated statistical errors ...",
                file=sys.stderr)
    for spec, data, err in zip(cc_spectra, medians, errors):
        spec.set_data(data, group_squeeze=group_squeeze)
        spec.add_stat_err(err, group_squeeze=group_squeeze)
        spec.write(clobber=clobber)
# main_crosstalk routine }}}


if __name__ == "__main__":
    # arguments' default values
    default_mode = "both"
    default_mc_times = 5000
    # commandline arguments parser
    parser = argparse.ArgumentParser(
            description="Correct the crosstalk effects for XMM EPIC spectra",
            epilog="Version: %s (%s)" % (__version__, __date__))
    parser.add_argument("config", help="config file in which describes " +\
            "the crosstalk relations ('ConfigObj' syntax)")
    parser.add_argument("-m", "--mode", dest="mode", default=default_mode,
            help="operation mode (both | crosstalk | deprojection)")
    parser.add_argument("-B", "--no-subtract-bkg", dest="subtract_bkg",
            action="store_false", help="do NOT subtract background first")
    parser.add_argument("-N", "--fix-negative", dest="fix_negative",
            action="store_true", help="fix negative channel values")
    parser.add_argument("-M", "--mc-times", dest="mc_times",
            type=int, default=default_mc_times,
            help="Monte Carlo times for error estimation")
    parser.add_argument("-C", "--clobber", dest="clobber",
            action="store_true", help="overwrite output file if exists")
    parser.add_argument("-v", "--verbose", dest="verbose",
            action="store_true", help="show verbose information")
    args = parser.parse_args()
    # merge commandline arguments and config
    config       = ConfigObj(args.config)
    subtract_bkg = set_argument("subtract_bkg", True,  args, config)
    fix_negative = set_argument("fix_negative", False, args, config)
    verbose      = set_argument("verbose",      False, args, config)
    clobber      = set_argument("clobber",      False, args, config)
    # operation mode
    mode = config.get("mode", default_mode)
    if args.mode != default_mode:
        mode = args.mode
    # Monte Carlo times
    mc_times = config.as_int("mc_times")
    if args.mc_times != default_mc_times:
        mc_times = args.mc_times

    if mode.lower() == "both":
        print("MODE: CROSSTALK + DEPROJECTION", file=sys.stderr)
        main(config, subtract_bkg=subtract_bkg, fix_negative=fix_negative,
                mc_times=mc_times, verbose=verbose, clobber=clobber)
    elif mode.lower() == "deprojection":
        print("MODE: DEPROJECTION", file=sys.stderr)
        main_deprojection(config, mc_times=mc_times,
                verbose=verbose, clobber=clobber)
    elif mode.lower() == "crosstalk":
        print("MODE: CROSSTALK", file=sys.stderr)
        main_crosstalk(config, subtract_bkg=subtract_bkg,
                fix_negative=fix_negative, mc_times=mc_times,
                verbose=verbose, clobber=clobber)
    else:
        raise ValueError("Invalid operation mode: %s" % mode)
    print(WARNING)

#  vim: set ts=4 sw=4 tw=0 fenc=utf-8 ft=python: #