aboutsummaryrefslogtreecommitdiffstats
path: root/python/msvst_starlet.py
blob: e534d3d44334caea4deefa5c7c8fe8afa1fb9163 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# References:
# [1] Jean-Luc Starck, Fionn Murtagh & Jalal M. Fadili
#     Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity
#     Section 3.5, 6.6
#
# Credits:
# [1] https://github.com/abrazhe/image-funcut/blob/master/imfun/atrous.py
#
# Aaron LI
# Created: 2016-03-17
# Updated: 2016-04-22
#
# ChangeLog:
# 2016-04-22:
#   * Add argument "end-scale" to specifiy the end denoising scale
#   * Check outfile existence first
#   * Add argument "start-scale" to specifiy the start denoising scale
#   * Fix a bug about "p_cutoff" when "comp" contains ALL False's
#   * Show more verbose information/details
# 2016-04-20:
#   * Add argparse and main() for scripting
#

"""
Starlet wavelet transform, i.e., isotropic undecimated wavelet transform
(IUWT), or à trous wavelet transform.
And multi-scale variance stabling transform (MS-VST), which can be used
to effectively remove the Poisson noises.
"""

__version__ = "0.2.5"
__date__    = "2016-04-22"


import sys
import os
import argparse
from datetime import datetime

import numpy as np
import scipy as sp
from scipy import signal
from astropy.io import fits


class B3Spline:  # {{{
    """
    B3-spline wavelet.
    """
    # scaling function (phi)
    dec_lo = np.array([1.0, 4.0, 6.0, 4.0, 1.0]) / 16
    dec_hi = np.array([-1.0, -4.0, 10.0, -4.0, -1.0]) / 16
    rec_lo = np.array([0.0, 0.0, 1.0, 0.0, 0.0])
    rec_hi = np.array([0.0, 0.0, 1.0, 0.0, 0.0])
# B3Spline }}}


class IUWT:  # {{{
    """
    Isotropic undecimated wavelet transform.
    """
    ## Decomposition filters list:
    # a_{scale} = convole(a_0, filters[scale])
    # Note: the zero-th scale filter (i.e., delta function) is the first
    # element, thus the array index is the same as the decomposition scale.
    filters = []

    phi = None              # wavelet scaling function (2D)
    level = 0               # number of transform level
    decomposition = None    # decomposed coefficients/images
    reconstruction = None   # reconstructed image

    # convolution boundary condition
    boundary = "symm"

    def __init__(self, phi=B3Spline.dec_lo, level=None, boundary="symm",
            data=None):
        self.set_wavelet(phi=phi)
        self.level = level
        self.boundary = boundary
        self.data = np.array(data)

    def reset(self):
        """
        Reset the object attributes.
        """
        self.data = None
        self.phi = None
        self.decomposition = None
        self.reconstruction = None
        self.level = 0
        self.filters = []
        self.boundary = "symm"

    def load_data(self, data):
        self.reset()
        self.data = np.array(data)

    def set_wavelet(self, phi):
        self.reset()
        phi = np.array(phi)
        if phi.ndim == 1:
            phi_ = phi.reshape(1, -1)
            self.phi = np.dot(phi_.T, phi_)
        elif phi.ndim == 2:
            self.phi = phi
        else:
            raise ValueError("Invalid phi dimension")

    def calc_filters(self):
        """
        Calculate the convolution filters of each scale.
        Note: the zero-th scale filter (i.e., delta function) is the first
        element, thus the array index is the same as the decomposition scale.
        """
        self.filters = []
        # scale 0: delta function
        h = np.array([[1]])  # NOTE: 2D
        self.filters.append(h)
        # scale 1
        h = self.phi[::-1, ::-1]
        self.filters.append(h)
        for scale in range(2, self.level+1):
            h_up = self.zupsample(self.phi, order=scale-1)
            h2 = signal.convolve2d(h_up[::-1, ::-1], h, mode="same",
                    boundary=self.boundary)
            self.filters.append(h2)

    def transform(self, data, scale, boundary="symm"):
        """
        Perform only one scale wavelet transform for the given data.

        return:
            [ approx, detail ]
        """
        self.decomposition = []
        approx = signal.convolve2d(data, self.filters[scale],
                mode="same", boundary=self.boundary)
        detail = data - approx
        return [approx, detail]

    def decompose(self, level, boundary="symm"):
        """
        Perform IUWT decomposition in the plain loop way.
        The filters of each scale/level are calculated first, then the
        approximations of each scale/level are calculated by convolving the
        raw/finest image with these filters.

        return:
            [ W_1, W_2, ..., W_n, A_n ]
            n = level
            W: wavelet details
            A: approximation
        """
        self.boundary = boundary
        if self.level != level or self.filters == []:
            self.level = level
            self.calc_filters()
        self.decomposition = []
        approx = self.data
        for scale in range(1, level+1):
            # approximation:
            approx2 = signal.convolve2d(self.data, self.filters[scale],
                    mode="same", boundary=self.boundary)
            # wavelet details:
            w = approx - approx2
            self.decomposition.append(w)
            if scale == level:
                self.decomposition.append(approx2)
            approx = approx2
        return self.decomposition

    def decompose_recursive(self, level, boundary="symm"):
        """
        Perform the IUWT decomposition in the recursive way.

        return:
            [ W_1, W_2, ..., W_n, A_n ]
            n = level
            W: wavelet details
            A: approximation
        """
        self.level = level
        self.boundary = boundary
        self.decomposition = self.__decompose(self.data, self.phi, level=level)
        return self.decomposition

    def __decompose(self, data, phi, level):
        """
        2D IUWT decomposition (or stationary wavelet transform).

        This is a convolution version, where kernel is zero-upsampled
        explicitly. Not fast.

        Parameters:
        - level : level of decomposition
        - phi : low-pass filter kernel
        - boundary : boundary conditions (passed to scipy.signal.convolve2d,
                     'symm' by default)

        Returns:
            list of wavelet details + last approximation. Each element in
            the list is an image of the same size as the input image. 
        """
        if level <= 0:
            return data
        shapecheck = map(lambda a,b:a>b, data.shape, phi.shape)
        assert np.all(shapecheck)
        # approximation:
        approx = signal.convolve2d(data, phi[::-1, ::-1], mode="same",
                boundary=self.boundary)
        # wavelet details:
        w = data - approx
        phi_up = self.zupsample(phi, order=1)
        shapecheck = map(lambda a,b:a>b, data.shape, phi_up.shape)
        if level == 1:
            return [w, approx]
        elif not np.all(shapecheck):
            print("Maximum allowed decomposition level reached",
                    file=sys.stderr)
            return [w, approx]
        else:
            return [w] + self.__decompose(approx, phi_up, level-1)

    @staticmethod
    def zupsample(data, order=1):
        """
        Upsample data array by interleaving it with zero's.

        h{up_order: n}[l] = (1) h[l], if l % 2^n == 0;
                            (2) 0, otherwise
        """
        shape = data.shape
        new_shape = [ (2**order * (n-1) + 1) for n in shape ]
        output = np.zeros(new_shape, dtype=data.dtype)
        output[[ slice(None, None, 2**order) for d in shape ]] = data
        return output

    def reconstruct(self, decomposition=None):
        if decomposition is not None:
            reconstruction = np.sum(decomposition, axis=0)
            return reconstruction
        else:
            self.reconstruction = np.sum(self.decomposition, axis=0)

    def get_detail(self, scale):
        """
        Get the wavelet detail coefficients of given scale.
        Note: 1 <= scale <= level
        """
        if scale < 1 or scale > self.level:
            raise ValueError("Invalid scale")
        return self.decomposition[scale-1]

    def get_approx(self):
        """
        Get the approximation coefficients of the largest scale.
        """
        return self.decomposition[-1]
# IUWT }}}


class IUWT_VST(IUWT):  # {{{
    """
    IUWT with Multi-scale variance stabling transform.

    Refernce:
    [1] Bo Zhang, Jalal M. Fadili & Jean-Luc Starck,
        IEEE Trans. Image Processing, 17, 17, 2008
    """
    # VST coefficients and the corresponding asymptotic standard deviation
    # of each scale.
    vst_coef = []

    def reset(self):
        super(self.__class__, self).reset()
        vst_coef = []

    def __decompose(self):
        raise AttributeError("No '__decompose' attribute")

    @staticmethod
    def soft_threshold(data, threshold):
        if isinstance(data, np.ndarray):
            data_th = data.copy()
            data_th[np.abs(data) <= threshold] = 0.0
            data_th[data > threshold] -= threshold
            data_th[data < -threshold] += threshold
        else:
            data_th = data
            if np.abs(data) <= threshold:
                data_th = 0.0
            elif data > threshold:
                data_th -= threshold
            else:
                data_th += threshold
        return data_th

    def tau(self, k, scale):
        """
        Helper function used in VST coefficients calculation.
        """
        return np.sum(np.power(self.filters[scale], k))

    def filters_product(self, scale1, scale2):
        """
        Calculate the scalar product of the filters of two scales,
        considering only the overlapped part.
        Helper function used in VST coefficients calculation.
        """
        if scale1 > scale2:
            filter_big   = self.filters[scale1]
            filter_small = self.filters[scale2]
        else:
            filter_big   = self.filters[scale2]
            filter_small = self.filters[scale1]
        # crop the big filter to match the size of the small filter
        size_big = filter_big.shape
        size_small = filter_small.shape
        size_diff2 = list(map(lambda a,b: (a-b)//2, size_big, size_small))
        filter_big_crop = filter_big[
                size_diff2[0]:(size_big[0]-size_diff2[0]),
                size_diff2[1]:(size_big[1]-size_diff2[1])]
        assert(np.all(list(map(lambda a,b: a==b,
                size_small, filter_big_crop.shape))))
        product = np.sum(filter_small * filter_big_crop)
        return product

    def calc_vst_coef(self):
        """
        Calculate the VST coefficients and the corresponding
        asymptotic standard deviation of each scale, according to the
        calculated filters of each scale/level.
        """
        self.vst_coef = []
        for scale in range(self.level+1):
            b = 2 * np.sqrt(np.abs(self.tau(1, scale)) / self.tau(2, scale))
            c = 7.0*self.tau(2, scale) / (8.0*self.tau(1, scale)) - \
                    self.tau(3, scale) / (2.0*self.tau(2, scale))
            if scale == 0:
                std = -1.0
            else:
                std = np.sqrt((self.tau(2, scale-1) / \
                        (4 * self.tau(1, scale-1)**2)) + \
                        (self.tau(2, scale) / (4 * self.tau(1, scale)**2)) - \
                        (self.filters_product(scale-1, scale) / \
                        (2 * self.tau(1, scale-1) * self.tau(1, scale))))
            self.vst_coef.append({ "b": b, "c": c, "std": std })

    def vst(self, data, scale, coupled=True):
        """
        Perform variance stabling transform

        XXX: parameter `coupled' why??
        Credit: MSVST-V1.0/src/libmsvst/B3VSTAtrous.h
        """
        self.vst_coupled = coupled
        if self.vst_coef == []:
            self.calc_vst_coef()
        if coupled:
            b = 1.0
        else:
            b = self.vst_coef[scale]["b"]
        data_vst = b * np.sqrt(np.abs(data + self.vst_coef[scale]["c"]))
        return data_vst

    def ivst(self, data, scale, cbias=True):
        """
        Inverse variance stabling transform
        NOTE: assuming that `a_{j} + c^{j}' are all positive.

        XXX: parameter `cbias' why??
             `bias correction' is recommended while reconstruct the data
             after estimation
        Credit: MSVST-V1.0/src/libmsvst/B3VSTAtrous.h
        """
        self.vst_cbias = cbias
        if cbias:
            cb = 1.0 / (self.vst_coef[scale]["b"] ** 2)
        else:
            cb = 0.0
        data_ivst = data ** 2 + cb - self.vst_coef[scale]["c"]
        return data_ivst

    def is_significant(self, scale, fdr=0.1, independent=False, verbose=False):
        """
        Multiple hypothesis testing with false discovery rate (FDR) control.

        `independent': whether the test statistics of all the null
        hypotheses are independent.
        If `independent=True': FDR <= (m0/m) * q
        otherwise: FDR <= (m0/m) * q * (1 + 1/2 + 1/3 + ... + 1/m)

        References:
        [1] False discovery rate - Wikipedia
            https://en.wikipedia.org/wiki/False_discovery_rate
        """
        coef = self.get_detail(scale)
        std = self.vst_coef[scale]["std"]
        pvalues = 2.0 * (1.0 - sp.stats.norm.cdf(np.abs(coef) / std))
        p_sorted = pvalues.flatten()
        p_sorted.sort()
        N = len(p_sorted)
        if independent:
            cn = 1.0
        else:
            cn = np.sum(1.0 / np.arange(1, N+1))
        p_comp = fdr * np.arange(N) / (N * cn)
        comp = (p_sorted < p_comp)
        if np.sum(comp) == 0:
            # `comp' contains ALL False
            p_cutoff = 0.0
        else:
            # cutoff p-value after FDR control/correction
            p_cutoff = np.max(p_sorted[comp])
        sig = (pvalues <= p_cutoff)
        if verbose:
            print("std/sigma: %g, p_cutoff: %g" % (std, p_cutoff),
                    flush=True, file=sys.stderr)
        return (sig, p_cutoff)

    def denoise(self, fdr=0.1, fdr_independent=False, start_scale=1,
            end_scale=None, verbose=False):
        """
        Denoise the wavelet coefficients by controlling FDR.
        """
        self.fdr = fdr
        self.fdr_indepent = fdr_independent
        self.denoised = []
        # supports of significant coefficients of each scale
        self.sig_supports = [None]  # make index match the scale
        self.p_cutoff = [None]
        if verbose:
            print("MSVST denosing ...", flush=True, file=sys.stderr)
        for scale in range(1, self.level+1):
            coef = self.get_detail(scale)
            if verbose:
                print("\tScale %d: " % scale, end="",
                        flush=True, file=sys.stderr)
            if (scale < start_scale) or \
                    ((end_scale is not None) and scale > end_scale):
                if verbose:
                    print("skipped", flush=True, file=sys.stderr)
                sig, p_cutoff = None, None
            else:
                sig, p_cutoff = self.is_significant(scale, fdr=fdr,
                        independent=fdr_independent, verbose=verbose)
                coef[np.logical_not(sig)] = 0.0
            #
            self.denoised.append(coef)
            self.sig_supports.append(sig)
            self.p_cutoff.append(p_cutoff)
        # append the last approximation
        self.denoised.append(self.get_approx())

    def decompose(self, level=5, boundary="symm", verbose=False):
        """
        2D IUWT decomposition with VST.
        """
        self.boundary = boundary
        if self.level != level or self.filters == []:
            self.level = level
            self.calc_filters()
            self.calc_vst_coef()
        self.decomposition = []
        approx = self.data
        if verbose:
            print("IUWT decomposing (%d levels): " % level,
                    end="", flush=True, file=sys.stderr)
        for scale in range(1, level+1):
            if verbose:
                print("%d..." % scale, end="", flush=True, file=sys.stderr)
            # approximation:
            approx2 = signal.convolve2d(self.data, self.filters[scale],
                    mode="same", boundary=self.boundary)
            # wavelet details:
            w = self.vst(approx, scale=scale-1) - self.vst(approx2, scale=scale)
            self.decomposition.append(w)
            if scale == level:
                self.decomposition.append(approx2)
            approx = approx2
        if verbose:
            print("DONE!", flush=True, file=sys.stderr)
        return self.decomposition

    def reconstruct_ivst(self, denoised=True, positive_project=True):
        """
        Reconstruct the original image from the *un-denoised* decomposition
        by applying the inverse VST.

        This reconstruction result is also used as the `initial condition'
        for the below `iterative reconstruction' algorithm.

        arguments:
        * denoised: whether use th denoised data or the direct decomposition
        * positive_project: whether replace negative values with zeros
        """
        if denoised:
            decomposition = self.denoised
        else:
            decomposition = self.decomposition
        self.positive_project = positive_project
        details = np.sum(decomposition[:-1], axis=0)
        approx = self.vst(decomposition[-1], scale=self.level)
        reconstruction = self.ivst(approx+details, scale=0)
        if positive_project:
            reconstruction[reconstruction < 0.0] = 0.0
        self.reconstruction = reconstruction
        return reconstruction

    def reconstruct(self, denoised=True, niter=10, verbose=False):
        """
        Reconstruct the original image using iterative method with
        L1 regularization, because the denoising violates the exact inverse
        procedure.

        arguments:
        * denoised: whether use the denoised coefficients
        * niter: number of iterations
        """
        if denoised:
            decomposition = self.denoised
        else:
            decomposition = self.decomposition
        # L1 regularization
        lbd = 1.0
        delta = lbd / (niter - 1)
        # initial solution
        solution = self.reconstruct_ivst(denoised=denoised,
                positive_project=True)
        #
        iuwt = IUWT(level=self.level)
        iuwt.calc_filters()
        # iterative reconstruction
        if verbose:
            print("Iteratively reconstructing (%d times): " % niter,
                    end="", flush=True, file=sys.stderr)
        for i in range(niter):
            if verbose:
                print("%d..." % i, end="", flush=True, file=sys.stderr)
            tempd = self.data.copy()
            solution_decomp = []
            for scale in range(1, self.level+1):
                approx, detail = iuwt.transform(tempd, scale)
                approx_sol, detail_sol = iuwt.transform(solution, scale)
                # Update coefficients according to the significant supports,
                # which are acquired during the denosing precodure with FDR.
                sig = self.sig_supports[scale]
                detail_sol[sig] = detail[sig]
                detail_sol = self.soft_threshold(detail_sol, threshold=lbd)
                #
                solution_decomp.append(detail_sol)
                tempd = approx.copy()
                solution = approx_sol.copy()
            # last approximation (the two are the same)
            solution_decomp.append(approx)
            # reconstruct
            solution = iuwt.reconstruct(decomposition=solution_decomp)
            # discard all negative values
            solution[solution < 0] = 0.0
            #
            lbd -= delta
        if verbose:
            print("DONE!", flush=True, file=sys.stderr)
        #
        self.reconstruction = solution
        return self.reconstruction
# IUWT_VST }}}


def main():
    # commandline arguments parser
    parser = argparse.ArgumentParser(
            description="Poisson Noise Removal with Multi-scale Variance " + \
                        "Stabling Transform and Wavelet Transform",
            epilog="Version: %s (%s)" % (__version__, __date__))
    parser.add_argument("-l", "--level", dest="level",
            type=int, default=5,
            help="level of the IUWT decomposition")
    parser.add_argument("-r", "--fdr", dest="fdr",
            type=float, default=0.1,
            help="false discovery rate")
    parser.add_argument("-I", "--fdr-independent", dest="fdr_independent",
            action="store_true", default=False,
            help="whether the FDR null hypotheses are independent")
    parser.add_argument("-s", "--start-scale", dest="start_scale",
            type=int, default=1,
            help="which scale to start the denoising (inclusive)")
    parser.add_argument("-e", "--end-scale", dest="end_scale",
            type=int, default=0,
            help="which scale to end the denoising (inclusive)")
    parser.add_argument("-n", "--niter", dest="niter",
            type=int, default=10,
            help="number of iterations for reconstruction")
    parser.add_argument("-v", "--verbose", dest="verbose",
            action="store_true", default=False,
            help="show verbose progress")
    parser.add_argument("-C", "--clobber", dest="clobber",
            action="store_true", default=False,
            help="overwrite output file if exists")
    parser.add_argument("infile", help="input image with Poisson noises")
    parser.add_argument("outfile", help="output denoised image")
    args = parser.parse_args()

    if args.end_scale == 0:
        args.end_scale = args.level

    if args.verbose:
        print("infile: '%s'" % args.infile, file=sys.stderr)
        print("outfile: '%s'" % args.outfile, file=sys.stderr)
        print("level: %d" % args.level, file=sys.stderr)
        print("fdr: %.2f" % args.fdr, file=sys.stderr)
        print("fdr_independent: %s" % args.fdr_independent, file=sys.stderr)
        print("start_scale: %d" % args.start_scale, file=sys.stderr)
        print("end_scale: %d" % args.end_scale, file=sys.stderr)
        print("niter: %d\n" % args.niter, flush=True, file=sys.stderr)

    if not args.clobber and os.path.exists(args.outfile):
        raise OSError("outfile '%s' already exists" % args.outfile)

    imgfits = fits.open(args.infile)
    img = imgfits[0].data
    # Remove Poisson noises
    msvst = IUWT_VST(data=img)
    msvst.decompose(level=args.level, verbose=args.verbose)
    msvst.denoise(fdr=args.fdr, fdr_independent=args.fdr_independent,
            start_scale=args.start_scale, end_scale=args.end_scale,
            verbose=args.verbose)
    msvst.reconstruct(denoised=True, niter=args.niter, verbose=args.verbose)
    img_denoised = msvst.reconstruction
    # Output
    imgfits[0].data = img_denoised
    imgfits[0].header.add_history("%s: Removed Poisson Noises @ %s" % (
                os.path.basename(sys.argv[0]), datetime.utcnow().isoformat()))
    imgfits[0].header.add_history("  TOOL: %s (v%s, %s)" % (
                os.path.basename(sys.argv[0]), __version__, __date__))
    imgfits[0].header.add_history("  PARAM: %s" % " ".join(sys.argv[1:]))
    imgfits.writeto(args.outfile, checksum=True, clobber=args.clobber)


if __name__ == "__main__":
    main()