aboutsummaryrefslogtreecommitdiffstats
path: root/python/radialPSD2d.py
blob: 2b5c4d861d84fccbc64bb8c09a00757e623fb6b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Credit:
# [1]  Radially averaged power spectrum of 2D real-valued matrix
#      Evan Ruzanski
#      'raPsd2d.m'
#      https://www.mathworks.com/matlabcentral/fileexchange/23636-radially-averaged-power-spectrum-of-2d-real-valued-matrix
#
# Aaron LI <aaronly.me@gmail.com>
# Created: 2015-04-22
# Updated: 2016-04-26
#
# Changelog:
# 2016-04-26:
#   * Adjust plot function
#   * Update normalize argument; Add pixel argument
# 2016-04-25:
#   * Update plot function
#   * Add command line scripting support
#   * Encapsulate the functions within class 'PSD'
#   * Update docs/comments
#

"""
Compute the radially averaged power spectral density (i.e., power spectrum).
"""

__version__ = "0.3.1"
__date__    = "2016-04-25"


import sys
import os
import argparse

import numpy as np
from scipy import fftpack
from astropy.io import fits

import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure

plt.style.use("ggplot")


class PSD:
    """
    Computes the 2D power spectral density and the radially averaged power
    spectral density (i.e., 1D power spectrum).
    """
    # 2D image data
    img = None
    # value and unit of 1 pixel for the input image
    pixel = (None, None)
    # whether to normalize the power spectral density by image size
    normalize = True
    # 2D power spectral density
    psd2d = None
    # 1D (radially averaged) power spectral density
    freqs     = None
    psd1d     = None
    psd1d_err = None

    def __init__(self, img, pixel=(1.0, "pixel"), normalize=True):
        self.img = img.astype(np.float)
        self.pixel = pixel
        self.normalize = normalize

    def calc_psd2d(self):
        """
        Computes the 2D power spectral density of the given image.
        Note that the low frequency components are shifted to the center
        of the FFT'ed image.

        Return:
            2D power spectral density, which is dimensionless if normalized,
            otherwise has unit ${pixel_unit}^2.
        """
        rows, cols = self.img.shape
        ## Compute the power spectral density (i.e., power spectrum)
        imgf = fftpack.fftshift(fftpack.fft2(self.img))
        if self.normalize:
            norm = rows * cols * self.pixel[0]**2
        else:
            norm = 1.0  # Do not normalize
        self.psd2d = (np.abs(imgf) / norm) ** 2
        return self.psd2d

    def calc_radial_psd1d(self, k_geometric=True, k_step=1.2):
        """
        Computes the radially averaged power spectral density from the
        provided 2D power spectral density.

        XXX/TODO:

        Arguments:
          * k_geometric: whether the k (i.e., frequency) varies as
                         geometric sequences (i.e., k, k*k_step, ...),
                         otherwise, k varies as (k, k+k_step, ...)
          * k_step: the step ratio or step length for k

        Return:
            (freqs, radial_psd, radial_psd_err)
            freqs: spatial freqencies (unit: ${pixel_unit}^(-1))
                   if k_geometric=True, frequencies are taken as the
                   geometric means.
            radial_psd: radially averaged power spectral density for each
                        frequency
            radial_psd_err: standard deviations of each radial_psd
        """
        psd2d = self.psd2d.copy()
        rows, cols = psd2d.shape
        ## Adjust the PSD array size
        dim_diff = np.abs(rows - cols)
        dim_max  = max(rows, cols)
        # Pad the 2D PSD array to be sqaure
        if rows > cols:
            # pad columns
            if np.mod(dim_diff, 2) == 0:
                cols_left     = np.zeros((rows, dim_diff/2))
                cols_left[:]  = np.nan
                cols_right    = np.zeros((rows, dim_diff/2))
                cols_right[:] = np.nan
                psd2d         = np.hstack((cols_left, psd2d, cols_right))
            else:
                cols_left     = np.zeros((rows, np.floor(dim_diff/2)))
                cols_left[:]  = np.nan
                cols_right    = np.zeros((rows, np.floor(dim_diff/2)+1))
                cols_right[:] = np.nan
                psd2d         = np.hstack((cols_left, psd2d, cols_right))
        elif rows < cols:
            # pad rows
            if np.mod(dim_diff, 2) == 0:
                rows_top       = np.zeros((dim_diff/2, cols))
                rows_top[:]    = np.nan
                rows_bottom    = np.zeros((dim_diff/2, cols))
                rows_bottom[:] = np.nan
                psd2d          = np.vstack((rows_top, psd2d, rows_bottom))
            else:
                rows_top       = np.zeros((np.floor(dim_diff/2), cols))
                rows_top[:]    = np.nan
                rows_bottom    = np.zeros((np.floor(dim_diff/2)+1, cols))
                rows_bottom[:] = np.nan
                psd2d          = np.vstack((rows_top, psd2d, rows_bottom))
        ## Compute radially average power spectrum
        px       = np.arange(-dim_max/2, dim_max/2)
        x, y     = np.meshgrid(px, px)
        rho, phi = self.cart2pol(x, y)
        rho      = np.around(rho).astype(np.int)
        dim_half = int(np.floor(dim_max/2) + 1)
        radial_psd     = np.zeros(dim_half)
        radial_psd_err = np.zeros(dim_half) # standard error
        for r in range(dim_half):
            # Get the indices of the elements satisfying rho[i,j]==r
            ii, jj = (rho == r).nonzero()
            # Calculate the mean value at a given radii
            data              = psd2d[ii, jj]
            radial_psd[r]     = np.nanmean(data)
            radial_psd_err[r] = np.nanstd(data)
        # Calculate frequencies
        f = fftpack.fftfreq(dim_max, d=1)  # sample spacing: set to 1 pixel
        freqs = np.abs(f[:dim_half])
        #
        self.freqs     = freqs
        self.psd1d     = radial_psd
        self.psd1d_err = radial_psd_err
        return (freqs, radial_psd, radial_psd_err)

    @staticmethod
    def cart2pol(x, y):
        """
        Convert Cartesian coordinates to polar coordinates.
        """
        rho = np.sqrt(x**2 + y**2)
        phi = np.arctan2(y, x)
        return (rho, phi)

    @staticmethod
    def pol2cart(rho, phi):
        """
        Convert polar coordinates to Cartesian coordinates.
        """
        x = rho * np.cos(phi)
        y = rho * np.sin(phi)
        return (x, y)

    def plot(self, ax=None, fig=None):
        """
        Make a plot of the radial (1D) PSD with matplotlib.
        """
        if ax is None:
            fig, ax = plt.subplots(1, 1)
        #
        xmin = self.freqs[1] / 1.2  # ignore the first 0
        xmax = self.freqs[-1]
        ymin = np.nanmin(self.psd1d) / 10.0
        ymax = np.nanmax(self.psd1d + self.psd1d_err)
        #
        eb = ax.errorbar(self.freqs, self.psd1d, yerr=self.psd1d_err,
                         fmt="none")
        ax.plot(self.freqs, self.psd1d, "ko")
        ax.set_xscale("log")
        ax.set_yscale("log")
        ax.set_xlim(xmin, xmax)
        ax.set_ylim(ymin, ymax)
        ax.set_title("Radially Averaged Power Spectral Density")
        ax.set_xlabel(r"k (%s$^{-1}$)" % self.pixel[1])
        if self.normalize:
            ax.set_ylabel("Power")
        else:
            ax.set_ylabel(r"Power (%s$^2$)" % self.pixel[1])
        fig.tight_layout()
        return (fig, ax)


def main():
    parser = argparse.ArgumentParser(
            description="Compute the radially averaged power spectral density",
            epilog="Version: %s (%s)" % (__version__, __date__))
    parser.add_argument("-V", "--version", action="version",
            version="%(prog)s " + "%s (%s)" % (__version__, __date__))
    parser.add_argument("-i", "--infile", dest="infile",
            required=True, help="input image")
    parser.add_argument("-o", "--outfile", dest="outfile",
            required=True, help="output file to store the PSD data")
    parser.add_argument("-p", "--png", dest="png",
            help="plot the PSD and save to the given PNG file")
    parser.add_argument("-v", "--verbose", dest="verbose",
            action="store_true", help="show verbose information")
    parser.add_argument("-C", "--clobber", dest="clobber",
            action="store_true",
            help="overwrite the output files if already exist")
    args = parser.parse_args()

    # Check output files whether already exists
    if (not args.clobber) and os.path.exists(args.outfile):
        raise ValueError("outfile '%s' already exists" % args.outfile)
    if (not args.clobber) and os.path.exists(args.png):
        raise ValueError("output png '%s' already exists" % args.png)

    # Load image data
    if args.verbose:
        print("Loading input image ...", file=sys.stderr)
    with fits.open(args.infile) as ffile:
        img = ffile[0].data
        psd = PSD(img, normalize=True)

    # Calculate the power spectral density
    if args.verbose:
        print("Calculate 2D power spectral density ...", file=sys.stderr)
    psd.calc_psd2d()
    if args.verbose:
        print("Calculate radially averaged (1D) power spectral density ...",
                file=sys.stderr)
    freqs, psd1d, psd1d_err = psd.calc_radial_psd1d()

    # Write out PSD results
    psd_data = np.column_stack((freqs, psd1d, psd1d_err))
    np.savetxt(args.outfile, psd_data, header="freqs  psd1d  psd1d_err")

    # Make and save a plot
    fig = Figure(figsize=(10, 8))
    canvas = FigureCanvas(fig)
    ax = fig.add_subplot(111)
    psd.plot(ax=ax, fig=fig)
    fig.savefig(args.png, format="png", dpi=150)


if __name__ == "__main__":
    main()