1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
# -*- coding: utf-8 -*-
#
# Kullback-Leibler or Jensen-Shannon divergence between two distributions
#
# The Kullback-Leibler divergence is given by:
# D_{KL}(P(x), Q(x)) = sum[ P(x) * log(P(x) / Q(x)) ]
# where P(x) is the underground true distribution, and Q(x) the approximation
# distribution. Thus KL divergence measures the information lost when Q is
# used to approximate P.
#
# The Jensen-Shannon divergence is given by:
# D_{JS}(P, Q) = 0.5 * D_{KL}(P, M) + 0.5 * D_{KL}(Q, M); M = (P+Q)/2
# This is a symmetrised divergence, and is equal to 1/2 the so-called
# Jeffrey divergence.
#
# Credits:
# [1] Wikipedia - Kullback-Leibler divergence
# https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
# [2] David Fass, KLDIV
# http://www.mathworks.com/matlabcentral/fileexchange/13089-kldiv/content//kldiv.m
#
# Aaron LI
# 2015/09/04
#
# Calculate the entropy of the probability mass distribution.
# The zeros are ignored.
#
# Arguments:
# x - probability mass distribution
#
# Return:
# entropy in unit "bits"
#
calc.entropy <- function(x) {
x.gt0 <- x[x>0]
return(sum(-x.gt0 * log2(x.gt0)))
}
# Calculate the KL divergence of distribution P from Q, or the JS divergence
# between the P and Q distributions.
#
# TODO:
# * to add other methods to deal with zero probabilities:
# - add eps to p.m.f and renormalize
# - Byesian prior
# - smoothing
#
# Credits:
# [1] Calculate the Kullback-Leibler Divergence in practice?
# http://stats.stackexchange.com/questions/97938/calculate-the-kullback-leibler-divergence-in-practice
# [2] How to compute KL-divergence when PMF contains 0s?
# http://mathoverflow.net/questions/72668/how-to-compute-kl-divergence-when-pmf-contains-0s
#
# Arguments:
# p - probabilities representing the distribution P (underground true)
# q - probabilities representing the distribution Q (approximation)
# type - which type of divergence to be calculated
# + "kl": (default) Kullback-Leibler divergence
# + "klsym": symmetric variant of the Kullback-Leibler divergence,
# which given by (KL(p, q) + KL(q, p))/2
# + "js": Jensen-Shannon divergence
# zeros - how to deal with the zeros in each distribution probabilities
# + "ignore": just ignore the data points with probability of zero
#
# Note that the vectors p and q must have the same length, and the
# sum of probabilities p and q must be 1 +/- 1e-5
#
# Return:
# calculate divergence value in unit "bits"
#
kldiv <- function(p, q, type="kl", zeros="ignore") {
# check length of vectors
stopifnot(length(p) == length(q))
# validate probabilities
eps_prob <- 1e-5
stopifnot(abs(sum(p) - 1) <= eps_prob, abs(sum(q) - 1) <= eps_prob)
# how to deal with zero probabilities
if (zeros == "ignore") {
# just ignore the zeros in probabilities
nonzeros <- (p > 0) & (q > 0)
p <- p[nonzeros]
q <- q[nonzeros]
} else {
stop(paste("Unsupported parameter value zeros=", zeros, "\n", sep=""))
}
# check divergence type
if (type == "kl") {
# Kullback-Leibler divergence
div <- sum(p * (log2(p) - log2(q)))
} else if (type == "klsym") {
# symmetric variant KL divergence
div <- 0.5 * (sum(p * (log2(p) - log2(q))) +
sum(q * (log2(q) - log2(p))))
} else if (type == "js") {
# Jensen-Shannon divergence
m <- (p + q) / 2
div <- 0.5 * (sum(p * (log2(p) - log2(m))) +
sum(q * (log2(q) - log2(m))))
} else {
stop(paste("Unsupported parameter value type=", type, "\n", sep=""))
}
return(div)
}
# Estimate the probability mass distribution for the observation data,
# using "density()".
# The range of output coordinates of points is set to be:
# from: min(x) - cut*bw
# to: max(x) + cut*bw
# And the probability mass distribution is normalized.
#
# Arguments:
# x - input observation data
# n - number of equally spaced points at which the probability mass is
# to be estimated.
# bw - bandwidth to be used
# kernel - the smoothing kernel
# from - coordinate of the left-most point
# to - coordinate of the right-most point
# cut - c(left, right). Number of bandwidths beyond the left and right
# extremes of the input data.
# This allows the estimated density to drop to approximately zero
# at the extremes.
# If "from" and "to" specified, then "cut" is ignored.
#
# Returns:
# list with following components:
# x - the coordinates of the points where probability mass estimated
# y - the estimated probability mass
# bw - bandwidth used
# kernel - kernel used
# n - sample size
# cut - left and right cut used
# from - coordinate of the left-most point used
# to - coordinate of the right-most point used
#
estimate.prob.mass <- function(x, bw="nrd0", kernel="gaussian", n=512,
from=NULL, to=NULL, cut=c(3,3)) {
data <- x[!is.na(x)]
# calculate the bandwidth
bw <- get(paste("bw.", bw, sep=""))(data)
# determine the estimation range
if (is.null(from)) {
from <- min(data) - cut[1] * bw
}
if (is.null(to)) {
to <- max(data) + cut[2] * bw
}
# estimate with "density()"
d <- density(data, bw=bw, kernel=kernel, n=n, from=from, to=to)
# renormalize the probability mass distribution
pmass <- d$y / sum(d$y)
prob.mass <- list(x=d$x, y=pmass, bw=bw, kernel=kernel,
n=n, from=from, to=to, cut=cut)
return(prob.mass)
}
# Estimate the probability mass distribution for the source and corresponding
# background data using 'estimate.prob.mass()'.
#
# The coordinates at which the probability masses are estimated are the same
# for the source and corresponding background probability mass distributions.
# Therefore we can calculate the KL divergence between these two distributions.
#
# Argument:
# srcdata - raw counts data drawn from the source region
# bkgdata - raw counts data drawn from the background region
#
# Return:
# data.frame with the following components:
# x - the coordinates of the points where probability mass estimated
# src - the estimated probability masses of the source data
# bkg - the estimated probability masses of the background data
#
pm.src.bkg <- function(srcdata, bkgdata) {
# compare the data ranges
if (max(srcdata) > max(bkgdata)) {
pm.src <- estimate.prob.mass(srcdata)
from <- pm.src$from
to <- pm.src$to
pm.bkg <- estimate.prob.mass(bkgdata, from=from, to=to)
} else {
pm.bkg <- estimate.prob.mass(bkgdata)
from <- pm.bkg$from
to <- pm.bkg$to
pm.src <- estimate.prob.mass(srcdata, from=from, to=to)
}
df <- data.frame(x=pm.src$x, src=pm.src$y, bkg=pm.bkg$y)
return(df)
}
# Calculate the entropies and KL/JS divergences of the source and background
# probability mass distribution group.
#
# Arguments:
# pmdf - data.frame of the probability mass distribution
# comp - components to be calculated
# + "entropy": entropy of the source and background
# + "kl": KL divergences from source to background and vice versa
# + "klsym": symmetric variant of KL divergence
# + "js": JS divergence
#
# Return:
# list with following components:
# entropy.src - entropy of the source distribution
# entropy.bkg - entropy of the background distribution
# kl.src2bkg - KL divergence from source to background
# kl.bkg2src - KL divergence from background to source
# klsym - symmetric variant KL divergence
# js - JS divergence
info.src.bkg <- function(pmdf, comp=c("entropy", "kl", "klsym", "js")) {
pm.src <- pmdf$src
pm.bkg <- pmdf$bkg
entropy.src <- NULL
entropy.bkg <- NULL
kl.src2bkg <- NULL
kl.bkg2src <- NULL
klsym <- NULL
js <- NULL
if ("entropy" %in% comp) {
entropy.src <- calc.entropy(pm.src)
entropy.bkg <- calc.entropy(pm.bkg)
}
if ("kl" %in% comp) {
kl.src2bkg <- kldiv(pm.src, pm.bkg, type="kl")
kl.bkg2src <- kldiv(pm.bkg, pm.src, type="kl")
}
if ("klsym" %in% comp) {
klsym <- kldiv(pm.src, pm.bkg, type="klsym")
}
if ("js" %in% comp) {
js <- kldiv(pm.src, pm.bkg, type="js")
}
return(list(entropy.src=entropy.src, entropy.bkg=entropy.bkg,
kl.src2bkg=kl.src2bkg, kl.bkg2src=kl.bkg2src,
klsym=klsym, js=js))
}
# Calculate the entropies and KL/JS divergences of the source density
# histogram with respect to the corresponding background data which
# drawn from the estimated Poisson mass distribution.
#
# Arguments:
# src - raw counts data of the source region
# comp - components to be calculated
# + "entropy": entropy of the source and background
# + "kl": KL divergences from source to background and vice versa
# + "klsym": symmetric variant of KL divergence
# + "js": JS divergence
#
# Return:
# list with following components:
# entropy.src - entropy of the source distribution
# entropy.bkg - entropy of the background distribution
# kl.src2bkg - KL divergence from source to background
# kl.bkg2src - KL divergence from background to source
# klsym - symmetric variant KL divergence
# js - JS divergence
#
info.src.pois <- function(src, comp=c("entropy", "kl", "klsym", "js")) {
# make the density histogram of the source counts data
hist.src <- hist(src, breaks=(min(src):(max(src)+1)-0.5), plot=FALSE)
x <- hist.src$mids
pm.src <- hist.src$density
# calculate the corresponding theoretical Poisson density/mass distribution
# as the estimated background
lambda <- mean(src)
pm.pois <- dpois(x, lambda)
pm.pois <- pm.pois / sum(pm.pois)
# calculate the entropy, KL/JS divergences
entropy.src <- NULL
entropy.bkg <- NULL
kl.src2bkg <- NULL
kl.bkg2src <- NULL
klsym <- NULL
js <- NULL
if ("entropy" %in% comp) {
entropy.src <- calc.entropy(pm.src)
entropy.bkg <- calc.entropy(pm.pois)
}
if ("kl" %in% comp) {
kl.src2bkg <- kldiv(pm.src, pm.pois, type="kl")
kl.bkg2src <- kldiv(pm.pois, pm.src, type="kl")
}
if ("klsym" %in% comp) {
klsym <- kldiv(pm.src, pm.pois, type="klsym")
}
if ("js" %in% comp) {
js <- kldiv(pm.src, pm.pois, type="js")
}
return(list(entropy.src=entropy.src, entropy.bkg=entropy.bkg,
kl.src2bkg=kl.src2bkg, kl.bkg2src=kl.bkg2src,
klsym=klsym, js=js))
}
# Calculate the information (e.g., entropy, divergences) for each group of
# region data.
# If the background data are not provided, then the background is estimated
# with a Poisson density/mass distribution.
info.reglist <- function(srcdatalist, bkgdatalist=NULL) {
if (is.null(bkgdatalist)) {
infofunc <- "info.src.pois"
} else {
infofunc <- "info.src.bkg"
stopifnot(length(srcdatalist) == length(bkgdatalist))
}
l <- length(srcdatalist)
infodf <- data.frame(entropy.src=numeric(l), entropy.bkg=numeric(l),
kl.src2bkg=numeric(l), kl.bkg2src=numeric(l),
klsym=numeric(l), js=numeric(l))
for (i in 1:length(srcdatalist)) {
#cat(i, "\n")
if (is.null(bkgdatalist)) {
if (sum(srcdatalist[[i]]) == 0) {
# srcdata all zeros
cat(i, ": WARNING: srcdata are all zeros!\n")
info <- list(entropy.src=NA, entropy.bkg=NA,
kl.src2bkg=NA, kl.bkg2src=NA,
klsym=NA, js=NA)
} else {
info <- get(infofunc)(srcdatalist[[i]])
}
} else {
if (sum(srcdatalist[[i]]) == 0 || sum(bkgdatalist[[i]]) == 0) {
# srcdata / bkgdata all zeros
cat(i, ": WARNING: srcdata/bkgdata are all zeros!\n")
info <- list(entropy.src=NA, entropy.bkg=NA,
kl.src2bkg=NA, kl.bkg2src=NA,
klsym=NA, js=NA)
} else {
pmdf <- pm.src.bkg(srcdatalist[[i]], bkgdatalist[[i]])
info <- get(infofunc)(pmdf)
}
}
infodf[i, ] <- info
}
return(infodf)
}
# vim: set ts=8 sw=4 tw=0 fenc=utf-8 ft=r: #
|