summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAaron LI <aaronly.me@outlook.com>2016-07-01 12:10:15 +0800
committerAaron LI <aaronly.me@outlook.com>2016-07-01 12:10:15 +0800
commit10f0d7cfdfc55c1a3a7c1e9664c38efbd776b895 (patch)
tree6fc36b579e80582163d47be467e98ef8ef7cac68
parent0ba8fa6ed091c436fdce43c7ed505e3f4e2db1e0 (diff)
downloadcexcess-10f0d7cfdfc55c1a3a7c1e9664c38efbd776b895.tar.bz2
Add 'calc_overdensity.py'
* Calculate the overdensity profile * Determine the radii: R_{delta} * Calculate the total/gas mass within R_{delta}: Mtotal_{delta}, Mgas_{delta}
-rwxr-xr-xcalc_overdensity.py264
1 files changed, 264 insertions, 0 deletions
diff --git a/calc_overdensity.py b/calc_overdensity.py
new file mode 100755
index 0000000..f7b4d1d
--- /dev/null
+++ b/calc_overdensity.py
@@ -0,0 +1,264 @@
+#!/usr/bin/env python3
+#
+# Aaron LI
+# Created: 2016-06-30
+# Updated: 2016-06-30
+#
+
+"""
+Calculate the overdensity profile, and from which to calculate the
+R_{500} (defined as the radius of the sphere that encloses a mean total
+mass density of 500 times the critical density at the cluster's redshift)
+and M_gas_{500}/M_{500} (the enclosed gas/total mass by a sphere of radius
+R_{500}).
+
+
+References:
+[1] Ettori et al., 2013, Space Science Review, 177, 119-154
+
+
+Sample configuration file:
+------------------------------------------------------------
+## Configuration for `calc_overdensity.py`
+## Date: 2016-06-30
+
+# redshift of the source (critical density)
+redshift = <REDSHIFT>
+
+# gas mass profile
+m_gas_profile = mass_gas_profile.txt
+
+# output total (gravitational) mass profile
+m_total_profile = mass_total_profile.txt
+
+# number of times w.r.t the critical density
+delta = 500
+
+# output results in JSON format
+outfile = overdensity.json
+
+# output overdensity profile
+overdensity_profile = overdensity_profile.txt
+------------------------------------------------------------
+"""
+
+import argparse
+import json
+from collections import OrderedDict
+
+import numpy as np
+import scipy.optimize as optimize
+import astropy.units as au
+from astropy.cosmology import FlatLambdaCDM
+from configobj import ConfigObj
+
+import rpy2.robjects as ro
+from rpy2.robjects.packages import importr
+
+from astro_params import AstroParams
+
+
+class MassProfile:
+ """
+ Cluster's gas/total integrated mass profile.
+
+ The total/gravitational mass profile is required to calculate
+ the overdensity profile, from which the R_{delta} is then determined.
+ """
+ # supported types of mass profile
+ MASS_TYPES = ["total", "gas"]
+ # available splines
+ SPLINES = ["mass", "overdensity"]
+ # input mass data: [r, r_err, m]
+ r = None
+ r_err = None
+ m = None
+ # redshift of the object
+ redshift = None
+ # fitted smoothing spline
+ m_spline = None
+ m_spline_log10 = None
+ od_spline = None
+ od_spline_log10 = None
+ # call R through `rpy2`
+ mgcv = importr("mgcv")
+
+ def __init__(self, mass, mass_type="total"):
+ self.load_data(data=mass, mass_type=mass_type)
+
+ def load_data(self, data, mass_type="total"):
+ if mass_type not in self.MASS_TYPES:
+ raise ValueError("invalid mass_types: %s" % mass_type)
+ # 3-column mass profile: [r, r_err, mass]
+ self.r = data[:, 0].copy()
+ self.r_err = data[:, 1].copy()
+ self.m = data[:, 2].copy()
+ self.mass_type = mass_type
+
+ def calc_overdensity(self, z, verbose=True):
+ """
+ Calculate the overdensity profile from the total/gravitational
+ mass profile.
+
+ The overdensity is the ratio of the enclosed mean total mass
+ density to the critical density at the source's redshift.
+ """
+ if self.mass_type != "total":
+ raise ValueError("total mass profile is required")
+ #
+ if verbose:
+ print("Calculating the overdensity profile ...")
+ overdensity = np.zeros(self.r.shape)
+ # critical density
+ cosmo = FlatLambdaCDM(H0=AstroParams.H0, Om0=AstroParams.OmegaM0)
+ d_crit = cosmo.critical_density(z).cgs.value # [ g/cm^3 ]
+ for i, r in enumerate(self.r):
+ volume = (4.0/3.0) * np.pi * r**3
+ overdensity[i] = self.m[i] / volume / d_crit
+ self.overdensity = overdensity
+ return overdensity
+
+ def calc_radius_delta(self, delta):
+ """
+ Calculate the radius at which the overdensity is delta.
+ """
+ if self.od_spline is None:
+ self.fit_spline(spline="overdensity", log10=True)
+ if min(self.overdensity) > delta:
+ raise ValueError("min(overdensity) > %d" % delta)
+ r = optimize.newton(
+ lambda x: self.eval_spline("overdensity", x) - delta,
+ x0=500.0*au.kpc.to(au.cm),
+ tol=1e-2*au.kpc.to(au.cm))
+ return r
+
+ def calc_mass_delta(self, r_delta):
+ if self.m_spline is None:
+ self.fit_spline(spline="mass", log10=True)
+ return self.eval_spline(spline="mass", x=r_delta)
+
+ def save(self, outfile):
+ """
+ Save calculated overdensity profile.
+ """
+ data = np.column_stack([self.r,
+ self.r_err,
+ self.m])
+ header = "radius[cm] radius_err[cm] overdensity"
+ np.savetxt(outfile, data, header=header)
+
+ def fit_spline(self, spline, log10):
+ """
+ Fit a smoothing line to the specified spline data,
+ by utilizing the R `mgcv::gam()` function.
+
+ If 'log10' is True, the input data are first applied the log-scale
+ transform, and then fitted by the smoothing spline.
+
+ The fitted spline allows extrapolation.
+ """
+ if spline not in self.SPLINES:
+ raise ValueError("invalid spline: %s" % spline)
+ #
+ if spline == "mass":
+ # input gas/total mass profile
+ if log10:
+ x = ro.FloatVector(np.log10(self.r))
+ y = ro.FloatVector(np.log10(self.m))
+ self.m_spline_log10 = True
+ else:
+ x = ro.FloatVector(self.r)
+ y = ro.FloatVector(self.m)
+ self.m_spline_log10 = False
+ self.m_spline = self.mgcv.gam(
+ ro.Formula("y ~ s(x, bs='ps')"),
+ data=ro.DataFrame({"x": x, "y": y}),
+ method="REML")
+ elif spline == "overdensity":
+ # calculated overdensity profile
+ if log10:
+ x = ro.FloatVector(np.log10(self.r))
+ y = ro.FloatVector(np.log10(self.overdensity))
+ self.od_spline_log10 = True
+ else:
+ x = ro.FloatVector(self.radius)
+ y = ro.FloatVector(self.rho_total)
+ self.od_spline_log10 = False
+ self.od_spline = self.mgcv.gam(
+ ro.Formula("y ~ s(x, bs='ps')"),
+ data=ro.DataFrame({"x": x, "y": y}),
+ method="REML")
+ else:
+ raise ValueError("invalid spline: %s" % spline)
+
+ def eval_spline(self, spline, x):
+ """
+ Evaluate the specified spline at the supplied positions.
+ Also check whether the spline was fitted in the log-scale space,
+ and transform the evaluated values if necessary.
+ """
+ x = np.array(x)
+ if x.shape == ():
+ x = x.reshape((1,))
+ if spline == "mass":
+ spl = self.m_spline
+ log10 = self.m_spline_log10
+ elif spline == "overdensity":
+ spl = self.od_spline
+ log10 = self.od_spline_log10
+ else:
+ raise ValueError("invalid spline: %s" % spline)
+ #
+ if log10:
+ x_new = ro.ListVector({"x": ro.FloatVector(np.log10(x))})
+ y_pred = self.mgcv.predict_gam(spl, newdata=x_new)
+ y_pred = 10 ** np.array(y_pred)
+ else:
+ x_new = ro.ListVector({"x": ro.FloatVector(x)})
+ y_pred = self.mgcv.predict_gam(spl, newdata=x_new)
+ y_pred = np.array(y_pred)
+ #
+ if len(y_pred) == 1:
+ return y_pred[0]
+ else:
+ return y_pred
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Calculate overdensity profile and R_{500} etc.")
+ parser.add_argument("config", nargs="?", default="overdensity.conf",
+ help="config for overdensity profile and R_{500} " +
+ "etc. calculation (default: overdensity.conf)")
+ args = parser.parse_args()
+
+ config = ConfigObj(args.config)
+ redshift = config.as_float("redshift")
+ m_gas_data = np.loadtxt(config["m_gas_profile"])
+ m_total_data = np.loadtxt(config["m_total_profile"])
+ delta = list(map(int, config.as_list("delta")))
+
+ m_total_profile = MassProfile(mass=m_total_data, mass_type="total")
+ m_total_profile.calc_overdensity(z=redshift, verbose=True)
+ m_total_profile.save(outfile=config["overdensity_profile"])
+
+ m_gas_profile = MassProfile(mass=m_gas_data, mass_type="gas")
+
+ results = OrderedDict()
+ results["redshift"] = redshift
+
+ for d in delta:
+ r_delta = m_total_profile.calc_radius_delta(delta=d)
+ m_total_delta = m_total_profile.calc_mass_delta(r_delta)
+ m_gas_delta = m_gas_profile.calc_mass_delta(r_delta)
+ results["R%d[kpc]" % d] = r_delta * au.cm.to(au.kpc)
+ results["Mtotal%d[Msun]" % d] = m_total_delta * au.g.to(au.solMass)
+ results["Mgas%d[Msun]" % d] = m_gas_delta * au.g.to(au.solMass)
+
+ results_json = json.dumps(results, indent=2)
+ print(results_json)
+ open(config["outfile"], "w").write(results_json+"\n")
+
+
+if __name__ == "__main__":
+ main()