summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAaron LI <aaronly.me@outlook.com>2016-05-04 23:00:24 +0800
committerAaron LI <aaronly.me@outlook.com>2016-05-04 23:00:24 +0800
commit2085cacd8b32eae444e6b78bef2139cb1cbcf641 (patch)
treeea80be30505aaf2ad1473f88458cee705f25b853
parent69866135a8f0955196a26162afa4c90b9a5232e4 (diff)
downloadcexcess-2085cacd8b32eae444e6b78bef2139cb1cbcf641.tar.bz2
calc_pei.py: try to estimate PEI error (FIXME/TODO)
-rwxr-xr-xcalc_pei.py104
1 files changed, 78 insertions, 26 deletions
diff --git a/calc_pei.py b/calc_pei.py
index c8a79c1..bf49478 100755
--- a/calc_pei.py
+++ b/calc_pei.py
@@ -3,10 +3,10 @@
#
# Aaron LI
# Created: 2016-04-29
-# Updated: 2016-05-02
+# Updated: 2016-05-04
#
-# TODO:
-# * to calculate the PEI error
+# FIXME/TODO:
+# * come up a approach to estimate the PEI error
#
"""
@@ -36,10 +36,10 @@ from matplotlib.figure import Figure
from matplotlib.path import Path
import matplotlib.patches as patches
-from make_r500_regions import get_r500
+from info import get_r500
-__version__ = "0.3.1"
-__date__ = "2016-05-02"
+__version__ = "0.4.0"
+__date__ = "2016-05-04"
plt.style.use("ggplot")
@@ -50,17 +50,15 @@ def calc_pei(data, r500, interp_np=101):
of the lower-left part with respect to the total rectangle.
Arguments:
- * data: 3-column power spectrum data (frequency, power, power_err)
+ * data: (frequency, power) power spectrum data
* r500: R500 value in unit of the inverse of the above "frequency"
* interp_np: number of data points interpolated to calculate PEI
"""
- freqs = data[:, 0]
- psd1d = data[:, 1]
+ freqs, psd1d = data
# frequency values corresponding to 0.35R500 and 0.035R500
pei_fmin = 1.0 / (0.350 * r500)
pei_fmax = 1.0 / (0.035 * r500)
# switch to the logarithmic scale
- # XXX: how to deal with the errors
mask = (freqs > 0.0)
x = np.log10(freqs[mask])
y = np.log10(psd1d[mask])
@@ -78,15 +76,55 @@ def calc_pei(data, r500, interp_np=101):
area_below = scipy.integrate.trapz((y_interp-pei_ymin), x_interp)
pei_value = area_below / area_total
results = {
- "area_total": area_total,
- "area_below": area_below,
- "pei_value": pei_value,
- "pei_err": None,
+ "area_total": area_total,
+ "area_below": area_below,
+ "pei_value": pei_value,
}
data_interp_log10 = np.column_stack((x_interp, y_interp))
return (results, data_interp_log10)
+def estimate_pei_error(data, r500, mctimes, verbose=False):
+ """
+ Estimate the PEI error by Monte Carlo method.
+
+ FIXME:
+ CANNOT randomize the PSD data and just invoke the `calc_pei()` to
+ calculate the PEI value, which may be vastly different to the original
+ *central* value, due to the possible significant change to the PEI
+ rectangle and PSD data points (large PSD errors).
+ """
+ eps = 1.0e-30
+ freqs = data[:, 0]
+ psd1d = data[:, 1]
+ psd1d_err = data[:, 2]
+ psd1d_err[psd1d_err < eps] = eps
+ r500, r500_err = r500
+ if verbose:
+ print("Estimating PEI error by Monte Carlo (%d times) ..." % mctimes,
+ end="", flush=True)
+ pei_results = []
+ for i in range(mctimes):
+ if verbose and i % 100 == 0:
+ print("%d..." % i, end="", flush=True)
+ psd1d_rand = np.random.normal(psd1d, psd1d_err)
+ r500_rand = np.random.normal(r500, r500_err)
+ pei = calc_pei(data=(freqs, psd1d_rand), r500=r500_rand)
+ pei_results.append(pei["pei_value"])
+ pei_mean = np.mean(pei_results)
+ pei_err = np.std(pei_results)
+ pei_q25, pei_median, pei_q75 = np.percentile(pei_results,
+ q=(25, 50, 75))
+ results = {
+ "pei_mean": pei_mean,
+ "pei_median": pei_median,
+ "pei_q25": pei_q25,
+ "pei_q75": pei_q75,
+ "pei_err": pei_err,
+ }
+ return results
+
+
def plot_pei(data, data_interp_log10, info={}, ax=None, fig=None):
"""
Make a plot to visualize the PEI rectangular.
@@ -158,6 +196,7 @@ def main():
default_infile = "psd.txt"
default_outfile = "pei.json"
default_infojson = "../*_INFO.json"
+ # default_mctimes = 1000
parser = argparse.ArgumentParser(
description="Calculate the power excess index (PEI)",
@@ -165,6 +204,13 @@ def main():
parser.add_argument("-V", "--version", action="version",
version="%(prog)s " + "%s (%s)" % (__version__,
__date__))
+ # parser.add_argument("-v", "--verbose", dest="verbose",
+ # required=False, action="store_true",
+ # help="show verbose information")
+ # parser.add_argument("-m", "--mctimes", dest="mctimes", required=False,
+ # type=int, default=default_mctimes,
+ # help="number of MC times to estimate PEI error " +
+ # "(default: %d)" % default_mctimes)
parser.add_argument("-j", "--json", dest="json", required=False,
help="the *_INFO.json file " +
"(default: find %s)" % default_infojson)
@@ -193,23 +239,29 @@ def main():
name = info["Source Name"]
obsid = int(info["Obs. ID"])
r500 = get_r500(info)
- r500_kpc = r500["r500_kpc"]
r500_pix = r500["r500_pix"]
- kpc_per_pix = r500["kpc_per_pix"]
+ r500_err_pix = (abs(r500["r500EL_pix"]) + abs(r500["r500EU_pix"])) / 2
psd_data = np.loadtxt(args.infile)
- pei, data_interp_log10 = calc_pei(psd_data, r500=r500_pix)
+ freqs = psd_data[:, 0]
+ psd1d = psd_data[:, 1]
+ pei, data_interp_log10 = calc_pei(data=(freqs, psd1d), r500=r500_pix)
+ # pei_err = estimate_pei_error(psd_data, r500=(r500_pix, r500_err_pix),
+ # mctimes=args.mctimes, verbose=args.verbose)
pei_data = OrderedDict([
- ("name", name),
- ("obsid", obsid),
- ("r500_kpc", r500_kpc),
- ("r500_pix", r500_pix),
- ("kpc_per_pix", kpc_per_pix),
- ("area_total", pei["area_total"]),
- ("area_below", pei["area_below"]),
- ("pei", pei["pei_value"]),
- ("pei_err", pei["pei_err"]),
+ ("name", name),
+ ("obsid", obsid),
+ ("r500_pix", r500_pix),
+ ("r500_err_pix", r500_err_pix),
+ ("area_total", pei["area_total"]),
+ ("area_below", pei["area_below"]),
+ ("pei", pei["pei_value"]),
+ # ("pei_mean", pei_err["pei_mean"]),
+ # ("pei_median", pei_err["pei_median"]),
+ # ("pei_q25", pei_err["pei_q25"]),
+ # ("pei_q75", pei_err["pei_q75"]),
+ # ("pei_err", pei_err),
])
pei_data_json = json.dumps(pei_data, indent=2)
print(pei_data_json)