summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAaron LI <aaronly.me@outlook.com>2016-06-13 23:37:33 +0800
committerAaron LI <aaronly.me@outlook.com>2016-06-13 23:37:33 +0800
commit7dc84ad3586e6c8fe27dc9482de0331ca066288e (patch)
treee521e753966cd94d315de5c5ad3ad5ba1ffc6a86
parenteb938f3f590b311761530e9057473943d1ade146 (diff)
downloadcexcess-7dc84ad3586e6c8fe27dc9482de0331ca066288e.tar.bz2
deproject_sbp.py: implement primitive SBP deprojection approach
-rwxr-xr-xdeproject_sbp.py303
1 files changed, 302 insertions, 1 deletions
diff --git a/deproject_sbp.py b/deproject_sbp.py
index 8881b2f..94193e0 100755
--- a/deproject_sbp.py
+++ b/deproject_sbp.py
@@ -10,17 +10,25 @@
# References:
# [1] Croston et al. 2006, A&A, 459, 1007-1019
# [2] McLaughlin, 1999, ApJ, 117, 2398-2427
+# [3] Bouchet, 1995, A&AS, 113, 167
#
#
# Weitian LI
# Created: 2016-06-10
-# Updated: 2016-06-10
+# Updated: 2016-06-13
+#
+# Change logs:
+# 2016-06-13:
+# * Add class 'ABModel' to support data scaling
+# * Implement primitive SBP deprojection approach for class 'DeprojectSBP'
#
import argparse
import numpy as np
+import scipy.optimize
+import lmfit
class Projection:
@@ -159,6 +167,299 @@ def testProjection():
print("All tests PASSED!")
+class ABModel:
+ """
+ AB model is a modified version of the beta model, which can roughly
+ fit both centrally peaked and cored models, e.g., central excess emission.
+
+ References:
+ [1] Pratt & Arnaud, 2002, A&A, 394, 375; eq.(2)
+ [2] ref.[1], eq.(10)
+ """
+ name = "AB model"
+ # model parameters
+ params = lmfit.Parameters()
+ params.add_many( # (name, value, vary, min, max, expr)
+ ("A", 1.0e-9, True, 0.0, 1.0e-5, None),
+ ("alpha", 0.7, True, 0.1, 1.1, None),
+ ("rc", 30.0, True, 1.0, 1.0e4, None),
+ ("beta", 0.7, True, 0.3, 1.1, None))
+ # optimization method
+ fit_method = "lbfgsb"
+ # whether the 'ydata' and 'yerr' to be scaled in order to reduce
+ # the dynamical range for a more stable fitting
+ scale = False
+ scale_factor = 1.0
+
+ def __init__(self, fit_method="lbfgsb", params=None, scale=True):
+ self.fit_method = fit_method
+ if params is not None:
+ self.load_params(params)
+ self.scale = scale
+
+ def load_data(self, xdata, ydata=None, xerr=None, yerr=None,
+ update_params=False):
+ self.reset()
+ if xdata.ndim == 2 and xdata.shape[1] == 4:
+ # 4-column data
+ self.xdata = xdata[:, 0].copy()
+ self.xerr = xdata[:, 1].copy()
+ self.ydata = xdata[:, 2].copy()
+ self.yerr = xdata[:, 3].copy()
+ else:
+ self.xdata = np.array(xdata)
+ self.ydata = np.array(ydata)
+ self.xerr = np.array(xerr)
+ self.yerr = np.array(yerr)
+ self.scale_data(update_params=update_params)
+
+ def scale_data(self, update_params=False):
+ if self.scale:
+ y_min = np.min(self.ydata)
+ y_max = np.max(self.ydata)
+ self.scale_factor = np.exp(np.log(y_min*y_max) / 2)
+ self.ydata /= self.scale_factor
+ self.yerr /= self.scale_factor
+ if update_params:
+ A_min = 1.0
+ A_max = np.max(self.ydata)
+ self.set_param("A", value=(A_min+A_max)*0.5,
+ min=A_min, max=A_max)
+
+ def reset(self):
+ self.fitter = None
+ self.fitted = None
+
+ def f_residual(self, params):
+ if self.yerr is None:
+ return self.model(self.xdata, params) - self.ydata
+ else:
+ return (self.model(self.xdata, params) - self.ydata) / self.yerr
+
+ def fit(self, method=None):
+ if method is None:
+ method = self.fit_method
+ self.fitter = lmfit.Minimizer(self.f_residual, self.params)
+ self.fitted = self.fitter.minimize(method=method)
+ self.load_params(self.fitted.params)
+
+ @staticmethod
+ def model(x, params):
+ parvals = params.valuesdict()
+ A = parvals["A"]
+ alpha = parvals["alpha"]
+ rc = parvals["rc"]
+ beta = parvals["beta"]
+ return (A * np.power(x/rc, -alpha) *
+ np.power((1 + (x/rc)**2), -1.5*beta + 0.5*alpha))
+
+ def f(self, x):
+ return self.model(x, self.params) * self.scale_factor
+
+ def get_param(self, name=None):
+ """
+ Return the requested 'Parameter' object or the whole
+ 'Parameters' object of no name supplied.
+ """
+ try:
+ return self.params[name]
+ except KeyError:
+ return self.params
+
+ def set_param(self, name, *args, **kwargs):
+ """
+ Set the properties of the specified parameter.
+ """
+ param = self.params[name]
+ param.set(*args, **kwargs)
+
+ def dump_params(self, serialize=True):
+ """
+ Dump the current values/settings for all model parameters,
+ and these dumped results can be later loaded by 'load_params()'.
+ """
+ if serialize:
+ return self.params.dumps()
+ else:
+ return self.params.copy()
+
+ def load_params(self, params):
+ """
+ Load the provided parameters values/settings.
+ """
+ if isinstance(params, lmfit.parameter.Parameters):
+ self.params = params.copy()
+ else:
+ p = lmfit.parameter.Parameters()
+ p.loads(params)
+ self.params = p
+
+
+class DeprojectSBP:
+ """
+ Deproject the observed SBP to derive the 3D emission measure (EM)
+ profile, using a regularization technique.
+
+ References: ref.[1]
+ """
+ # input SBP data: [r, r_err, s, s_err]
+ r = None
+ r_err = None
+ s = None
+ s_err = None
+ # 'Projection' instance for this SBP
+ projector = None
+ # 'ABModel' instance to fit the deprojected EM profile for rescaling data
+ abmodel = None
+ # smoothing parameter to balance between fidelity (chisq) and
+ # consistency with the applied regularization constraint.
+ lbd = 1.0
+ # optimization method for scipy minimize
+ opt_method = "Powell"
+ # scipy optimize results from 'self.deproject()'
+ deproject_res = None
+ ####
+ debug_xlist = []
+
+ def __init__(self, r, r_err=None, s=None, s_err=None,
+ lbd=1.0, opt_method="Powell"):
+ self.load_data(r=r, r_err=r_err, s=s, s_err=s_err)
+ self.projector = Projection(rout=self.r+self.r_err)
+ self.abmodel = ABModel(scale=True)
+ self.lbd = lbd
+ self.opt_method = opt_method
+ self.debug_xlist = []
+
+ def load_data(self, r, r_err=None, s=None, s_err=None):
+ if r.ndim == 2 and r.shape[1] == 4:
+ # 4-column data
+ self.r = r[:, 0].copy()
+ self.r_err = r[:, 1].copy()
+ self.s = r[:, 2].copy()
+ self.s_err = r[:, 3].copy()
+ else:
+ self.r = np.array(r)
+ self.r_err = np.array(r_err)
+ self.s = np.array(s)
+ self.s_err = np.array(s_err)
+
+ def deproject(self, lbd=None, opt_method=None):
+ """
+ Deproject the observed SBP to derive the 3D EM profile by
+ minimizing the objective function.
+ """
+ def fobj(x):
+ return self.f_objective(x, scaled=True)
+
+ def callback(x):
+ # NOTE: 'x' here is the scaled EM solution
+ x_unscaled = self.unscale_data(x)
+ self.update_abmodel(x_unscaled)
+
+ if lbd is not None:
+ self.lbd = lbd
+ if opt_method is None:
+ opt_method = self.opt_method
+ # initial guess
+ em0 = self.projector.deproject(self.s)
+ # scale the EM data to reduce the dynamical range
+ em0_scaled = self.scale_data(em0, update_params=True)
+ # DEBUG
+ self.debug_xlist.append(em0_scaled)
+ res = scipy.optimize.minimize(fun=fobj, x0=em0_scaled,
+ method=opt_method,
+ callback=callback,
+ options={"disp": True})
+ self.deproject_res = res
+ self.em = self.unscale_data(res.x)
+ return self.em
+
+ def update_abmodel(self, x, xerr=None, update_params=False):
+ """
+ Load the supplied data into self.abmodel, and perform fitting.
+
+ If the errors/uncertainties is not specified, it is assumed
+ to have the same relative errors as the observed SBP.
+ """
+ self.debug_xlist.append(x)
+ if xerr is None:
+ x_err = x * self.s_err / self.s
+ self.abmodel.load_data(xdata=self.r, xerr=self.r_err,
+ ydata=x, yerr=x_err,
+ update_params=update_params)
+ self.abmodel.fit()
+
+ def scale_data(self, x, xerr=None, update_params=False):
+ """
+ Scale the data (i.e., 3D EM profile) by dividing the fitted
+ AB model.
+
+ If the errors/uncertainties is not specified, it is assumed
+ to have the same relative errors as the observed SBP.
+ """
+ self.update_abmodel(x=x, xerr=xerr, update_params=update_params)
+ x_fitted = self.abmodel.f(self.r)
+ x_scaled = x / x_fitted
+ return x_scaled
+
+ def unscale_data(self, x):
+ """
+ Undo the data scaling by multiplying the same fitted model
+ previously used to scale the data.
+ """
+ x_fitted = self.abmodel.f(self.r)
+ x_unscaled = x * x_fitted
+ return x_unscaled
+
+ def f_objective(self, x, scaled=False):
+ """
+ The objective function to be minimized, in order to derive the
+ best solution (i.e., deprojected SBP) for the observed SBP.
+
+ This objective function is a combination of plain chi-squared
+ and a regularization constraint.
+
+ 'lbd' is the parameter to balance the goodness-of-fit and the
+ regularization constraint.
+
+ References: ref.[1], eq.(2)
+ """
+ return (self.f_chisq(x, scaled=scaled) +
+ self.lbd * self.f_constraint(x, scaled=scaled))
+
+ def f_residual(self, x, scaled=False):
+ """
+ Calculate the residuals of each data point for the solution.
+
+ The current solution (i.e., 3D EM profile) is first projected
+ into the 2D SBP, then compared to the observed SBP.
+ """
+ if scaled:
+ x = self.unscale_data(x)
+ x_2d = self.projector.project(x)
+ residuals = (x_2d - self.s) / self.s_err
+ return residuals
+
+ def f_chisq(self, x, scaled=False):
+ """
+ Function to calculate the chi-squared value of the current
+ solution with respect to the data.
+ """
+ chisq = np.sum(self.f_residual(x, scaled=scaled) ** 2)
+ return chisq
+
+ def f_constraint(self, x, scaled=False):
+ """
+ Function to calculate the value of regularization constraint.
+
+ References: ref.[1], eq.(3)
+ """
+ if not scaled:
+ x = self.scale_data(x)
+ constraint = np.sum((x[:-1] + x[1:]) ** 2)
+ return constraint
+
+
def main():
parser = argparse.ArgumentParser(
description="Deproject the surface brightness profile (SBP)")