summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAaron LI <aaronly.me@outlook.com>2016-05-06 15:35:23 +0800
committerAaron LI <aaronly.me@outlook.com>2016-05-06 15:35:23 +0800
commit90ce99e03ca7ca43041815096d1284b423dfef7e (patch)
tree196c737ea5066487aef3bdc8c1d76574ccd7e363
parentea76d48775cc8c11e06c870b2fa73b61d6570d3e (diff)
downloadcexcess-90ce99e03ca7ca43041815096d1284b423dfef7e.tar.bz2
calc_sbp_excess.py: add function "estimate_excess_error()" using Monte Carlo
-rwxr-xr-xcalc_sbp_excess.py156
1 files changed, 123 insertions, 33 deletions
diff --git a/calc_sbp_excess.py b/calc_sbp_excess.py
index 2b472ca..6bf91b2 100755
--- a/calc_sbp_excess.py
+++ b/calc_sbp_excess.py
@@ -3,11 +3,14 @@
#
# Aaron LI
# Created: 2016-04-26
-# Updated: 2016-04-26
+# Updated: 2016-05-06
+#
+# Changelog:
+# 2016-05-06:
+# * Add function `estimate_excess_error()` to estimate uncertainty
+# * update according to `sbp_fit` renamed to `fit_sbp`
+# * PEP8 fixes
#
-# TODO:
-# * to estimate errors for the excess value and ratio (Monte Carlo:
-# repeatedly fit the randomized SBP data and calculate excess)
#
"""
@@ -19,9 +22,6 @@ NOTE:
* excess ratio: excess_value / brightness_observed
"""
-__version__ = "0.1.0"
-__date__ = "2016-04-26"
-
import sys
import argparse
@@ -31,51 +31,125 @@ from collections import OrderedDict
import numpy as np
from configobj import ConfigObj
-from sbp_fit import make_model
+from fit_sbp import make_model, make_sbpfit
+__version__ = "0.2.0"
+__date__ = "2016-05-06"
-def calc_excess(data, model):
+
+def calc_excess(data, fitted_model):
"""
Calculate the central brightness excess value and ratio with respect
to the fitted SBP model (single-beta).
+ TODO/XXX:
+ * whether to interpolate the SBP?
+
Arguments:
* data: raw 4-column SBP data
- * model: fitted SBP model
+ * fitted_model: fitted SBP model
"""
- radii = data[:, 0]
- radii_err = data[:, 1]
- brightness = data[:, 2]
- brightness_model = model.f(radii)
- rin = radii - radii_err
- rout = radii + radii_err
+ radii = data[:, 0]
+ radii_err = data[:, 1]
+ brightness = data[:, 2]
+ brightness_model = fitted_model.f(radii)
+ rin = radii - radii_err
+ rout = radii + radii_err
areas = np.pi * (rout**2 - rin**2)
- bsum_obs = np.sum(brightness * areas)
+ bsum_obs = np.sum(brightness * areas)
bsum_model = np.sum(brightness_model * areas)
excess_value = bsum_obs - bsum_model
excess_ratio = excess_value / bsum_obs
excess = {
- "brightness_obs": bsum_obs,
- "brightness_model": bsum_model,
- "excess_value": excess_value,
- "excess_ratio": excess_ratio,
+ "brightness_obs": bsum_obs,
+ "brightness_model": bsum_model,
+ "excess_value": excess_value,
+ "excess_ratio": excess_ratio,
}
return excess
+def estimate_excess_error(data, sbpfit, mctimes, verbose=False):
+ """
+ Estimate the uncertainty of central excess value by Monte Carlo method.
+
+ XXX/TODO:
+ * whether also consider the uncertainty of R500?
+
+ Arguments:
+ * data: 4-column SBP data (radius, r_err, brightness, brightness_err)
+ * sbpfit: `SbpFit` object used to perform SBP fitting
+ * mctimes: number of Monte Carlo iterations
+ """
+ brightness = data[:, 2]
+ brightness_err = data[:, 3]
+ params = sbpfit.dump_params()
+ ev_results = []
+ er_results = []
+ if verbose:
+ print("Estimating excess uncertainty by Monte Carlo " +
+ "(%d times) ..." % mctimes, end="", flush=True)
+ for i in range(mctimes):
+ if verbose and i % 100 == 0:
+ print("%d..." % i, end="", flush=True)
+ # randomize SBP data
+ brightness_rand = np.random.normal(brightness, scale=brightness_err)
+ sbpdata_rand = data.copy()
+ sbpdata_rand[:, 2] = brightness_rand
+ # load randomized data and perform SBP fit
+ sbpfit.reset(keep_source=True)
+ sbpfit.load_data(sbpdata_rand, keep_mask=True)
+ sbpfit.load_params(params)
+ sbpfit.fit()
+ model_rand = sbpfit.get_model()
+ excess = calc_excess(data=sbpdata_rand, fitted_model=model_rand)
+ ev_results.append(excess["excess_value"])
+ er_results.append(excess["excess_ratio"])
+ if verbose:
+ print("DONE!", flush=True)
+ ev_mean = np.mean(ev_results)
+ ev_std = np.std(ev_results)
+ ev_q25, ev_median, ev_q75 = np.percentile(ev_results, q=(25, 50, 75))
+ er_mean = np.mean(er_results)
+ er_std = np.std(er_results)
+ er_q25, er_median, er_q75 = np.percentile(er_results, q=(25, 50, 75))
+ results = {
+ "excess_value_mean": ev_mean,
+ "excess_value_median": ev_median,
+ "excess_value_q25": ev_q25,
+ "excess_value_q75": ev_q75,
+ "excess_value_std": ev_std,
+ "excess_ratio_mean": er_mean,
+ "excess_ratio_median": er_median,
+ "excess_ratio_q25": er_q25,
+ "excess_ratio_q75": er_q75,
+ "excess_ratio_std": er_std,
+ }
+ return results
+
+
def main():
# default arguments
default_outfile = "excess.json"
+ default_mctimes = 1000
parser = argparse.ArgumentParser(
description="Calculate the central brightness excess value",
epilog="Version: %s (%s)" % (__version__, __date__))
parser.add_argument("-V", "--version", action="version",
- version="%(prog)s " + "%s (%s)" % (__version__, __date__))
+ version="%(prog)s " +
+ "%s (%s)" % (__version__, __date__))
+ parser.add_argument("-v", "--verbose", dest="verbose",
+ required=False, action="store_true",
+ help="show verbose information")
+ parser.add_argument("-m", "--mctimes", dest="mctimes", required=False,
+ type=int, default=default_mctimes,
+ help="number of MC times to estimate excess error " +
+ "(default: %d)" % default_mctimes)
parser.add_argument("config", help="Config file for SBP fitting")
parser.add_argument("outfile", nargs="?", default=default_outfile,
- help="Output json file to save the results " + \
- "(default: %s)" % default_outfile)
+ help="Output json file to save the results " +
+ "(default: %s)" % default_outfile)
args = parser.parse_args()
config = ConfigObj(args.config)
@@ -83,7 +157,7 @@ def main():
config_model = config[modelname]
model = make_model(config, modelname=modelname)
- print("SBP model: %s" % model.name, file=sys.stderr)
+ print("SBP model: %s" % model.long_name, file=sys.stderr)
sbpfit_outfile = config.get("outfile")
sbpfit_outfile = config_model.get("outfile", sbpfit_outfile)
@@ -94,17 +168,33 @@ def main():
for pname, pvalue in sbpfit_results["params"].items():
model.set_param(name=pname, value=pvalue[0])
+ sbpfit = make_sbpfit(config, model=model)
+
sbpdata = np.loadtxt(config["sbpfile"])
- excess = calc_excess(data=sbpdata, model=model)
+ excess = calc_excess(data=sbpdata, fitted_model=model)
+ excess_err = estimate_excess_error(data=sbpdata, sbpfit=sbpfit,
+ mctimes=args.mctimes,
+ verbose=args.verbose)
excess_data = OrderedDict([
- ("name", config["name"]),
- ("obsid", int(config["obsid"])),
- ("model", modelname),
- ("brightness_obs", excess["brightness_obs"]),
- ("brightness_model", excess["brightness_model"]),
- ("excess_value", excess["excess_value"]),
- ("excess_ratio", excess["excess_ratio"]),
+ ("name", config["name"]),
+ ("obsid", int(config["obsid"])),
+ ("model", modelname),
+ ("brightness_obs", excess["brightness_obs"]),
+ ("brightness_model", excess["brightness_model"]),
+ ("excess_value", excess["excess_value"]),
+ ("excess_value_mean", excess_err["excess_value_mean"]),
+ ("excess_value_median", excess_err["excess_value_median"]),
+ ("excess_value_q25", excess_err["excess_value_q25"]),
+ ("excess_value_q75", excess_err["excess_value_q75"]),
+ ("excess_value_std", excess_err["excess_value_std"]),
+ ("excess_ratio", excess["excess_ratio"]),
+ ("excess_ratio_mean", excess_err["excess_ratio_mean"]),
+ ("excess_ratio_median", excess_err["excess_ratio_median"]),
+ ("excess_ratio_q25", excess_err["excess_ratio_q25"]),
+ ("excess_ratio_q75", excess_err["excess_ratio_q75"]),
+ ("excess_ratio_std", excess_err["excess_ratio_std"]),
+ ("mc_times", args.mctimes),
])
excess_data_json = json.dumps(excess_data, indent=2)
print(excess_data_json)