summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAaron LI <aaronly.me@outlook.com>2016-05-01 17:58:48 +0800
committerAaron LI <aaronly.me@outlook.com>2016-05-01 17:58:48 +0800
commitb42c0c7edce705919f21b5b42531c3f690bda8e7 (patch)
tree5bda9be393478dd3f0099f540b025083b775e0c9
parent26251d7ca84267906e8810b186627427e790d18f (diff)
downloadcexcess-b42c0c7edce705919f21b5b42531c3f690bda8e7.tar.bz2
calc_pei.py: add function to make a plot visualize the PEI calculation
-rwxr-xr-xcalc_pei.py89
1 files changed, 83 insertions, 6 deletions
diff --git a/calc_pei.py b/calc_pei.py
index 19e71bb..37273d9 100755
--- a/calc_pei.py
+++ b/calc_pei.py
@@ -3,11 +3,10 @@
#
# Aaron LI
# Created: 2016-04-29
-# Updated: 2016-04-29
+# Updated: 2016-05-01
#
# TODO:
# * to calculate the PEI error
-# * to save a plot with the rectangular and interpolation marked
#
"""
@@ -20,11 +19,12 @@ Reference:
Zhang, C., et al. 2016, ApJ
"""
-__version__ = "0.1.0"
-__date__ = "2016-04-29"
+__version__ = "0.2.1"
+__date__ = "2016-05-01"
import sys
+import os
import glob
import argparse
import json
@@ -35,8 +35,16 @@ import scipy as sp
import scipy.interpolate
import scipy.integrate
+import matplotlib.pyplot as plt
+from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
+from matplotlib.figure import Figure
+from matplotlib.path import Path
+import matplotlib.patches as patches
+
from make_r500_regions import get_r500
+plt.style.use("ggplot")
+
def calc_pei(data, r500, interp_np=101):
"""
@@ -62,6 +70,7 @@ def calc_pei(data, r500, interp_np=101):
x1 = np.log10(f1)
x2 = np.log10(f2)
# interpolate the power spectrum
+ # FIXME: include a pair surrounding data points for interpolation
f_interp = sp.interpolate.interp1d(x, y, kind="cubic", assume_sorted=True)
y1 = f_interp(x1)
y2 = f_interp(x2)
@@ -80,7 +89,63 @@ def calc_pei(data, r500, interp_np=101):
"pei_value": pei_value,
"pei_err": None,
}
- return results
+ data_interp_log10 = np.column_stack((x_interp, y_interp))
+ return (results, data_interp_log10)
+
+
+def plot_pei(data, data_interp_log10, ax=None, fig=None):
+ """
+ Make a plot to visualize the PEI rectangular.
+ """
+ if ax is None:
+ fig, ax = plt.subplots(1, 1)
+ freqs = data[:, 0]
+ psd1d = data[:, 1]
+ psd1d_err = data[:, 2]
+ #
+ mask = (freqs > 0.0)
+ xmin = np.min(freqs[mask]) / 1.2
+ xmax = np.max(freqs[mask])
+ ymin = np.min(psd1d[mask]) / 3.0
+ ymax = np.max(psd1d[mask] + psd1d_err[mask]) * 1.2
+ #
+ ax.plot(freqs, psd1d, color="black", linestyle="none",
+ marker="o", markersize=5, alpha=0.7)
+ ax.errorbar(freqs, psd1d, yerr=psd1d_err, fmt="none",
+ ecolor="blue", alpha=0.7)
+ ax.set_xscale("log")
+ ax.set_yscale("log")
+ ax.set_xlim(xmin, xmax)
+ ax.set_ylim(ymin, ymax)
+ ax.set_title("Radially Averaged Power Spectral Density")
+ ax.set_xlabel(r"k (pixel$^{-1}$)")
+ ax.set_ylabel("Power")
+ # plot the interpolated data points and the PEI rectangle
+ # credit: http://matplotlib.org/users/path_tutorial.html
+ x_interp = 10 ** data_interp_log10[:, 0]
+ y_interp = 10 ** data_interp_log10[:, 1]
+ ax.plot(x_interp, y_interp, linestyle="--", marker="D", markersize=2,
+ color="green", alpha=0.9)
+ vertices = [
+ (x_interp[0], y_interp[-1]), # left, bottom
+ (x_interp[0], y_interp[0]), # left, top
+ (x_interp[-1], y_interp[0]), # right, top
+ (x_interp[-1], y_interp[-1]), # right, bottom
+ (x_interp[0], y_interp[-1]), # ignored
+ ]
+ codes = [
+ Path.MOVETO,
+ Path.LINETO,
+ Path.LINETO,
+ Path.LINETO,
+ Path.CLOSEPOLY,
+ ]
+ path = Path(vertices, codes)
+ patch = patches.PathPatch(path, fill=False, color="green", linewidth=2,
+ alpha=0.9)
+ ax.add_patch(patch)
+ fig.tight_layout()
+ return (fig, ax)
def main():
@@ -104,8 +169,13 @@ def main():
required=False, default=default_outfile,
help="output json file to save the results " + \
"(default: %s)" % default_outfile)
+ parser.add_argument("-p", "--png", dest="png", default=None,
+ help="make PEI plot and save (default: same basename as outfile)")
args = parser.parse_args()
+ if args.png is None:
+ args.png = os.path.splitext(args.outfile)[0] + ".png"
+
info_json = glob.glob(default_infojson)[0]
if args.json:
info_json = args.json
@@ -120,7 +190,7 @@ def main():
kpc_per_pix = r500["kpc_per_pix"]
psd_data = np.loadtxt(args.infile)
- pei = calc_pei(psd_data, r500=r500_pix)
+ pei, data_interp_log10 = calc_pei(psd_data, r500=r500_pix)
pei_data = OrderedDict([
("name", name),
@@ -137,6 +207,13 @@ def main():
print(pei_data_json)
open(args.outfile, "w").write(pei_data_json+"\n")
+ # Make and save a plot
+ fig = Figure(figsize=(10, 8))
+ canvas = FigureCanvas(fig)
+ ax = fig.add_subplot(111)
+ plot_pei(psd_data, data_interp_log10, ax=ax, fig=fig)
+ fig.savefig(args.png, format="png", dpi=150)
+
if __name__ == "__main__":
main()