summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAaron LI <aaronly.me@outlook.com>2016-06-25 16:10:13 +0800
committerAaron LI <aaronly.me@outlook.com>2016-06-25 16:10:13 +0800
commitdf786c667ebb052155aa9b99b22d556ff42e5d50 (patch)
tree2195afd142d29b0d3eeeff517433e5bd80b6934e
parentbff0094b7adde0459d4996b312c6b2b33f51124d (diff)
downloadcexcess-df786c667ebb052155aa9b99b22d556ff42e5d50.tar.bz2
deproject_sbp.py: Use InterpolatedUnivariateSpline
-rwxr-xr-xdeproject_sbp.py28
1 files changed, 13 insertions, 15 deletions
diff --git a/deproject_sbp.py b/deproject_sbp.py
index ce6ad8d..313e586 100755
--- a/deproject_sbp.py
+++ b/deproject_sbp.py
@@ -2,9 +2,11 @@
#
# Weitian LI
# Created: 2016-06-10
-# Updated: 2016-06-24
+# Updated: 2016-06-25
#
# Change logs:
+# 2016-06-25:
+# * Use 'InterpolatedUnivariateSpline' instead of 'interp1d'
# 2016-06-24:
# * Move class 'ChandraPixel' to module 'astro_params.py'
# * Split class 'Projection' to a separate module 'projection.py'
@@ -151,8 +153,8 @@ from collections import OrderedDict
import astropy.units as au
import numpy as np
import pandas as pd
-import scipy.optimize
-import scipy.interpolate
+import scipy.optimize as optimize
+import scipy.interpolate as interpolate
import lmfit
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
@@ -449,10 +451,10 @@ class DeprojectSBP:
em0 = self.projector.deproject(self.s)
# scale the EM data to reduce the dynamical range
em0_scaled = self.scale_data(em0, update_params=True)
- res = scipy.optimize.minimize(fun=fobj, x0=em0_scaled,
- method=opt_method,
- callback=callback,
- options={"disp": True})
+ res = optimize.minimize(fun=fobj, x0=em0_scaled,
+ method=opt_method,
+ callback=callback,
+ options={"disp": True})
self.deproject_res = res
self.em = self.unscale_data(res.x)
return self.em
@@ -881,15 +883,11 @@ class BrightnessProfile:
projector = Projection(rout=self.r+self.r_err)
s_deproj = projector.deproject(self.s)
# allow extrapolation
- # XXX: cubic spline / smooth spline better ??
- cf_interp = scipy.interpolate.interp1d(x=self.cf_radius,
- y=self.cf_value,
- kind="linear",
- bounds_error=False,
- fill_value=self.cf_value[-1],
- assume_sorted=True)
+ # XXX: smooth spline better ??
+ cf_spline = interpolate.InterpolatedUnivariateSpline(
+ x=self.cf_radius, y=self.cf_value, ext="const")
# emission measure per unit volume
- em_v = s_deproj / cf_interp(self.r)
+ em_v = s_deproj / cf_spline(self.r)
ne = np.sqrt(em_v * AstroParams.ratio_ne_np)
self.ne = ne
# save results to output if specified