diff options
-rwxr-xr-x | deproject_sbp.py | 138 | ||||
-rwxr-xr-x | projection.py | 161 |
2 files changed, 163 insertions, 136 deletions
diff --git a/deproject_sbp.py b/deproject_sbp.py index 1ae63d5..5dfbc2d 100755 --- a/deproject_sbp.py +++ b/deproject_sbp.py @@ -6,6 +6,7 @@ # # Change logs: # 2016-06-24: +# * Split class 'Projection' to a separate module 'projection.py' # * Move class 'DensityProfile' to tool 'calc_mass_potential.py' # * Split class 'AstroParams' to separate module 'astro_params.py' # 2016-06-23: @@ -159,146 +160,11 @@ from matplotlib.figure import Figure from configobj import ConfigObj from astro_params import AstroParams +from projection import Projection plt.style.use("ggplot") -class Projection: - """ - Class that deals with projection from 3D volume density to 2D - surface density and vice versa. - - The inner-most shell/cylinder is assumed to at the center with inner - radius of ZERO. - """ - # number of shells/cylinders - N = 0 - # inner and outer radii of each spherical shell or cylinders - rin = None - rout = None - # projection matrix from 3D volume density to 2D surface density - proj_mat = None - - def __init__(self, rout): - self.N = len(rout) - self.rout = np.array(rout, dtype=float) - self.rin = np.concatenate([[0.0], self.rout[:-1]]) - self.calc_projection_matrix() - - def __str__(self): - return "%s: #%d shells: Rout(%s)" % (self.__class__.__name__, - self.N, self.rout) - - def calc_projection_matrix(self): - """ - Calculate the projection matrix according to the given outer radii. - - Arguments: - * rout: (vector) outer radius of each SB annulus or spherical shell - - Return: - * proj_mat: (matrix) an upper triangular matrix with element - [i, j] indicate the fraction of the emission from - shell j that is observed in annulus i. - - N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) = - \sum_{j=i}^{m} (n(R_{j-1}, R_j) * - V_int(R_{j-1}, R_j; R_{i-1}, R_i)) - - References: - * ref.[1], eq.(1) - * ref.[2], eq.(A2) - """ - proj_mat = np.zeros((self.N, self.N)) - for i in range(self.N): - # loop over each annulus - rin = self.rin[i] - rout = self.rout[i] - area = np.pi * (rout**2 - rin**2) - for j in range(i, self.N): - # calculate the contribution from each shell to annulus i - rin2 = self.rin[j] - rout2 = self.rout[j] - v_int = self.intersection_volume(rin2, rout2, rin, rout) - proj_mat[i, j] = v_int / area - self.proj_mat = proj_mat - - def project(self, densities): - """ - Project the given 3D (volume) densities to 2D (surface) densities, - using the calculated projection matrix: 'proj_mat'. - """ - densities = np.array(densities) - if self.rout.shape != densities.shape: - raise ValueError("different shapes of rout and given densities") - return self.proj_mat.dot(densities.T) - - def deproject(self, densities): - """ - Revert the projection procedure, i.e., deproject the given 2D - (surface) densities to derive the 3D (volume) densities. - - \curl{N}(R_{i-1}, R_i) = N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) - - n(R_{i-1}, R_i) = - (N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) / - V_int(R_{i-1}, R_i; R_{i-1}, R_i)) - - \sum_{j=i+1}^{m} (n(R_{j-1}, R_j) * - V_int(R_{j-1}, R_j; R_{i-1}, R_i) / - V_int(R_{i-1}, R_i; R_{i-1}, R_i)) - - Reference: ref.[2], eq.(A2) - """ - densities = np.array(densities) - if self.rout.shape != densities.shape: - raise ValueError("different shapes of rout and given densities") - n_3d = np.zeros(densities.shape) - # peel the onion: from outside inward - for i in reversed(range(self.N)): - rin = self.rin[i] - rout = self.rout[i] - area = np.pi * (rout**2 - rin**2) - v_int = self.intersection_volume(rin, rout, rin, rout) - n_3d[i] = densities[i] * area / v_int - # subtract the projections from the outer shells - for j in range(i+1, self.N): - rin2 = self.rin[j] - rout2 = self.rout[j] - v_int2 = self.intersection_volume(rin2, rout2, rin, rout) - n_3d[i] -= n_3d[j] * v_int2 / v_int - return n_3d - - @staticmethod - def intersection_volume(r1, r2, R1, R2): - """ - Calculate the volume of intersection between the spherical shell of - r1 <= r <= r2 and the cylinder of R1 <= R <= R2. - - Reference: ref.[2], eq.(A1) - """ - def trunc_pow(x, p): - if x <= 0.0: - return 0 - else: - return x ** p - # - v_int = (4.0*np.pi/3.0) * (trunc_pow((r2**2 - R1**2), 1.5) - - trunc_pow((r2**2 - R2**2), 1.5) + - trunc_pow((r1**2 - R2**2), 1.5) - - trunc_pow((r1**2 - R1**2), 1.5)) - return v_int - - -def testProjection(): - rout = np.array([1, 2, 3, 4, 5], dtype=float) - proj = Projection(rout) - n1 = np.array([1, 1, 1, 1, 1], dtype=float) - np.testing.assert_array_almost_equal(proj.deproject(proj.project(n1)), n1) - s2 = np.array([1, 1, 1, 1, 1], dtype=float) - np.testing.assert_array_almost_equal(proj.project(proj.deproject(s2)), s2) - print("All tests PASSED!") - - class FitModel: """ Base/Meta class for model fitting, with data and parameters scaling. diff --git a/projection.py b/projection.py new file mode 100755 index 0000000..a980265 --- /dev/null +++ b/projection.py @@ -0,0 +1,161 @@ +#!/usr/bin/env python3 +# +# Weitian LI +# Created: 2016-06-10 +# Updated: 2016-06-24 +# + +""" +Project the 3D volume density to 2D surface density and vice versa. + +References: +[1] McLaughlin, 1999, ApJ, 117, 2398-2427 +""" + +import numpy as np + + +class Projection: + """ + Class that deals with projection from 3D volume density to 2D + surface density and vice versa. + + NOTE: + * The inner-most shell/cylinder is assumed to at the center with inner + radius of ZERO. + * Uniform background should be subtracted before carrying out the + deprojection. + * The surface density is assumed to be cut at the largest available + radius, i.e., it is assumed that there isn't any density distributed + beyond the outer-most shell/cylinder. + """ + # number of shells/cylinders + N = 0 + # inner and outer radii of each spherical shell or cylinders + rin = None + rout = None + # projection matrix from 3D volume density to 2D surface density + proj_mat = None + + def __init__(self, rout): + self.N = len(rout) + self.rout = np.array(rout, dtype=float) + self.rin = np.concatenate([[0.0], self.rout[:-1]]) + self.calc_projection_matrix() + + def __str__(self): + return "%s: #%d shells: Rout(%s)" % (self.__class__.__name__, + self.N, self.rout) + + def calc_projection_matrix(self): + """ + Calculate the projection matrix according to the given outer radii. + + Arguments: + * rout: (vector) outer radius of each SB annulus or spherical shell + + Return: + * proj_mat: (matrix) an upper triangular matrix with element + [i, j] indicate the fraction of the emission from + shell j that is observed in annulus i. + + N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) = + \sum_{j=i}^{m} (n(R_{j-1}, R_j) * + V_int(R_{j-1}, R_j; R_{i-1}, R_i)) + + References: + * ref.[1], eq.(1) + * ref.[2], eq.(A2) + """ + proj_mat = np.zeros((self.N, self.N)) + for i in range(self.N): + # loop over each annulus + rin = self.rin[i] + rout = self.rout[i] + area = np.pi * (rout**2 - rin**2) + for j in range(i, self.N): + # calculate the contribution from each shell to annulus i + rin2 = self.rin[j] + rout2 = self.rout[j] + v_int = self.intersection_volume(rin2, rout2, rin, rout) + proj_mat[i, j] = v_int / area + self.proj_mat = proj_mat + + def project(self, densities): + """ + Project the given 3D (volume) densities to 2D (surface) densities, + using the calculated projection matrix: 'proj_mat'. + """ + densities = np.array(densities) + if self.rout.shape != densities.shape: + raise ValueError("different shapes of rout and given densities") + return self.proj_mat.dot(densities.T) + + def deproject(self, densities): + """ + Revert the projection procedure, i.e., deproject the given 2D + (surface) densities to derive the 3D (volume) densities. + + \curl{N}(R_{i-1}, R_i) = N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) + + n(R_{i-1}, R_i) = + (N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) / + V_int(R_{i-1}, R_i; R_{i-1}, R_i)) - + \sum_{j=i+1}^{m} (n(R_{j-1}, R_j) * + V_int(R_{j-1}, R_j; R_{i-1}, R_i) / + V_int(R_{i-1}, R_i; R_{i-1}, R_i)) + + Reference: ref.[2], eq.(A2) + """ + densities = np.array(densities) + if self.rout.shape != densities.shape: + raise ValueError("different shapes of rout and given densities") + n_3d = np.zeros(densities.shape) + # peel the onion: from outside inward + for i in reversed(range(self.N)): + rin = self.rin[i] + rout = self.rout[i] + area = np.pi * (rout**2 - rin**2) + v_int = self.intersection_volume(rin, rout, rin, rout) + n_3d[i] = densities[i] * area / v_int + # subtract the projections from the outer shells + for j in range(i+1, self.N): + rin2 = self.rin[j] + rout2 = self.rout[j] + v_int2 = self.intersection_volume(rin2, rout2, rin, rout) + n_3d[i] -= n_3d[j] * v_int2 / v_int + return n_3d + + @staticmethod + def intersection_volume(r1, r2, R1, R2): + """ + Calculate the volume of intersection between the spherical shell of + r1 <= r <= r2 and the cylinder of R1 <= R <= R2. + + Reference: ref.[2], eq.(A1) + """ + def trunc_pow(x, p): + if x <= 0.0: + return 0 + else: + return x ** p + # + v_int = (4.0*np.pi/3.0) * (trunc_pow((r2**2 - R1**2), 1.5) - + trunc_pow((r2**2 - R2**2), 1.5) + + trunc_pow((r1**2 - R2**2), 1.5) - + trunc_pow((r1**2 - R1**2), 1.5)) + return v_int + + +def testProjection(): + rout = np.array([1, 2, 3, 4, 5], dtype=float) + proj = Projection(rout) + n1 = np.array([1, 1, 1, 1, 1], dtype=float) + np.testing.assert_array_almost_equal(proj.deproject(proj.project(n1)), n1) + s2 = np.array([1, 1, 1, 1, 1], dtype=float) + np.testing.assert_array_almost_equal(proj.project(proj.deproject(s2)), s2) + print("All tests PASSED!") + + +if __name__ == "__main__": + testProjection() |