summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xdeproject_sbp.py138
-rwxr-xr-xprojection.py161
2 files changed, 163 insertions, 136 deletions
diff --git a/deproject_sbp.py b/deproject_sbp.py
index 1ae63d5..5dfbc2d 100755
--- a/deproject_sbp.py
+++ b/deproject_sbp.py
@@ -6,6 +6,7 @@
#
# Change logs:
# 2016-06-24:
+# * Split class 'Projection' to a separate module 'projection.py'
# * Move class 'DensityProfile' to tool 'calc_mass_potential.py'
# * Split class 'AstroParams' to separate module 'astro_params.py'
# 2016-06-23:
@@ -159,146 +160,11 @@ from matplotlib.figure import Figure
from configobj import ConfigObj
from astro_params import AstroParams
+from projection import Projection
plt.style.use("ggplot")
-class Projection:
- """
- Class that deals with projection from 3D volume density to 2D
- surface density and vice versa.
-
- The inner-most shell/cylinder is assumed to at the center with inner
- radius of ZERO.
- """
- # number of shells/cylinders
- N = 0
- # inner and outer radii of each spherical shell or cylinders
- rin = None
- rout = None
- # projection matrix from 3D volume density to 2D surface density
- proj_mat = None
-
- def __init__(self, rout):
- self.N = len(rout)
- self.rout = np.array(rout, dtype=float)
- self.rin = np.concatenate([[0.0], self.rout[:-1]])
- self.calc_projection_matrix()
-
- def __str__(self):
- return "%s: #%d shells: Rout(%s)" % (self.__class__.__name__,
- self.N, self.rout)
-
- def calc_projection_matrix(self):
- """
- Calculate the projection matrix according to the given outer radii.
-
- Arguments:
- * rout: (vector) outer radius of each SB annulus or spherical shell
-
- Return:
- * proj_mat: (matrix) an upper triangular matrix with element
- [i, j] indicate the fraction of the emission from
- shell j that is observed in annulus i.
-
- N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) =
- \sum_{j=i}^{m} (n(R_{j-1}, R_j) *
- V_int(R_{j-1}, R_j; R_{i-1}, R_i))
-
- References:
- * ref.[1], eq.(1)
- * ref.[2], eq.(A2)
- """
- proj_mat = np.zeros((self.N, self.N))
- for i in range(self.N):
- # loop over each annulus
- rin = self.rin[i]
- rout = self.rout[i]
- area = np.pi * (rout**2 - rin**2)
- for j in range(i, self.N):
- # calculate the contribution from each shell to annulus i
- rin2 = self.rin[j]
- rout2 = self.rout[j]
- v_int = self.intersection_volume(rin2, rout2, rin, rout)
- proj_mat[i, j] = v_int / area
- self.proj_mat = proj_mat
-
- def project(self, densities):
- """
- Project the given 3D (volume) densities to 2D (surface) densities,
- using the calculated projection matrix: 'proj_mat'.
- """
- densities = np.array(densities)
- if self.rout.shape != densities.shape:
- raise ValueError("different shapes of rout and given densities")
- return self.proj_mat.dot(densities.T)
-
- def deproject(self, densities):
- """
- Revert the projection procedure, i.e., deproject the given 2D
- (surface) densities to derive the 3D (volume) densities.
-
- \curl{N}(R_{i-1}, R_i) = N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1})
-
- n(R_{i-1}, R_i) =
- (N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) /
- V_int(R_{i-1}, R_i; R_{i-1}, R_i)) -
- \sum_{j=i+1}^{m} (n(R_{j-1}, R_j) *
- V_int(R_{j-1}, R_j; R_{i-1}, R_i) /
- V_int(R_{i-1}, R_i; R_{i-1}, R_i))
-
- Reference: ref.[2], eq.(A2)
- """
- densities = np.array(densities)
- if self.rout.shape != densities.shape:
- raise ValueError("different shapes of rout and given densities")
- n_3d = np.zeros(densities.shape)
- # peel the onion: from outside inward
- for i in reversed(range(self.N)):
- rin = self.rin[i]
- rout = self.rout[i]
- area = np.pi * (rout**2 - rin**2)
- v_int = self.intersection_volume(rin, rout, rin, rout)
- n_3d[i] = densities[i] * area / v_int
- # subtract the projections from the outer shells
- for j in range(i+1, self.N):
- rin2 = self.rin[j]
- rout2 = self.rout[j]
- v_int2 = self.intersection_volume(rin2, rout2, rin, rout)
- n_3d[i] -= n_3d[j] * v_int2 / v_int
- return n_3d
-
- @staticmethod
- def intersection_volume(r1, r2, R1, R2):
- """
- Calculate the volume of intersection between the spherical shell of
- r1 <= r <= r2 and the cylinder of R1 <= R <= R2.
-
- Reference: ref.[2], eq.(A1)
- """
- def trunc_pow(x, p):
- if x <= 0.0:
- return 0
- else:
- return x ** p
- #
- v_int = (4.0*np.pi/3.0) * (trunc_pow((r2**2 - R1**2), 1.5) -
- trunc_pow((r2**2 - R2**2), 1.5) +
- trunc_pow((r1**2 - R2**2), 1.5) -
- trunc_pow((r1**2 - R1**2), 1.5))
- return v_int
-
-
-def testProjection():
- rout = np.array([1, 2, 3, 4, 5], dtype=float)
- proj = Projection(rout)
- n1 = np.array([1, 1, 1, 1, 1], dtype=float)
- np.testing.assert_array_almost_equal(proj.deproject(proj.project(n1)), n1)
- s2 = np.array([1, 1, 1, 1, 1], dtype=float)
- np.testing.assert_array_almost_equal(proj.project(proj.deproject(s2)), s2)
- print("All tests PASSED!")
-
-
class FitModel:
"""
Base/Meta class for model fitting, with data and parameters scaling.
diff --git a/projection.py b/projection.py
new file mode 100755
index 0000000..a980265
--- /dev/null
+++ b/projection.py
@@ -0,0 +1,161 @@
+#!/usr/bin/env python3
+#
+# Weitian LI
+# Created: 2016-06-10
+# Updated: 2016-06-24
+#
+
+"""
+Project the 3D volume density to 2D surface density and vice versa.
+
+References:
+[1] McLaughlin, 1999, ApJ, 117, 2398-2427
+"""
+
+import numpy as np
+
+
+class Projection:
+ """
+ Class that deals with projection from 3D volume density to 2D
+ surface density and vice versa.
+
+ NOTE:
+ * The inner-most shell/cylinder is assumed to at the center with inner
+ radius of ZERO.
+ * Uniform background should be subtracted before carrying out the
+ deprojection.
+ * The surface density is assumed to be cut at the largest available
+ radius, i.e., it is assumed that there isn't any density distributed
+ beyond the outer-most shell/cylinder.
+ """
+ # number of shells/cylinders
+ N = 0
+ # inner and outer radii of each spherical shell or cylinders
+ rin = None
+ rout = None
+ # projection matrix from 3D volume density to 2D surface density
+ proj_mat = None
+
+ def __init__(self, rout):
+ self.N = len(rout)
+ self.rout = np.array(rout, dtype=float)
+ self.rin = np.concatenate([[0.0], self.rout[:-1]])
+ self.calc_projection_matrix()
+
+ def __str__(self):
+ return "%s: #%d shells: Rout(%s)" % (self.__class__.__name__,
+ self.N, self.rout)
+
+ def calc_projection_matrix(self):
+ """
+ Calculate the projection matrix according to the given outer radii.
+
+ Arguments:
+ * rout: (vector) outer radius of each SB annulus or spherical shell
+
+ Return:
+ * proj_mat: (matrix) an upper triangular matrix with element
+ [i, j] indicate the fraction of the emission from
+ shell j that is observed in annulus i.
+
+ N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) =
+ \sum_{j=i}^{m} (n(R_{j-1}, R_j) *
+ V_int(R_{j-1}, R_j; R_{i-1}, R_i))
+
+ References:
+ * ref.[1], eq.(1)
+ * ref.[2], eq.(A2)
+ """
+ proj_mat = np.zeros((self.N, self.N))
+ for i in range(self.N):
+ # loop over each annulus
+ rin = self.rin[i]
+ rout = self.rout[i]
+ area = np.pi * (rout**2 - rin**2)
+ for j in range(i, self.N):
+ # calculate the contribution from each shell to annulus i
+ rin2 = self.rin[j]
+ rout2 = self.rout[j]
+ v_int = self.intersection_volume(rin2, rout2, rin, rout)
+ proj_mat[i, j] = v_int / area
+ self.proj_mat = proj_mat
+
+ def project(self, densities):
+ """
+ Project the given 3D (volume) densities to 2D (surface) densities,
+ using the calculated projection matrix: 'proj_mat'.
+ """
+ densities = np.array(densities)
+ if self.rout.shape != densities.shape:
+ raise ValueError("different shapes of rout and given densities")
+ return self.proj_mat.dot(densities.T)
+
+ def deproject(self, densities):
+ """
+ Revert the projection procedure, i.e., deproject the given 2D
+ (surface) densities to derive the 3D (volume) densities.
+
+ \curl{N}(R_{i-1}, R_i) = N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1})
+
+ n(R_{i-1}, R_i) =
+ (N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) /
+ V_int(R_{i-1}, R_i; R_{i-1}, R_i)) -
+ \sum_{j=i+1}^{m} (n(R_{j-1}, R_j) *
+ V_int(R_{j-1}, R_j; R_{i-1}, R_i) /
+ V_int(R_{i-1}, R_i; R_{i-1}, R_i))
+
+ Reference: ref.[2], eq.(A2)
+ """
+ densities = np.array(densities)
+ if self.rout.shape != densities.shape:
+ raise ValueError("different shapes of rout and given densities")
+ n_3d = np.zeros(densities.shape)
+ # peel the onion: from outside inward
+ for i in reversed(range(self.N)):
+ rin = self.rin[i]
+ rout = self.rout[i]
+ area = np.pi * (rout**2 - rin**2)
+ v_int = self.intersection_volume(rin, rout, rin, rout)
+ n_3d[i] = densities[i] * area / v_int
+ # subtract the projections from the outer shells
+ for j in range(i+1, self.N):
+ rin2 = self.rin[j]
+ rout2 = self.rout[j]
+ v_int2 = self.intersection_volume(rin2, rout2, rin, rout)
+ n_3d[i] -= n_3d[j] * v_int2 / v_int
+ return n_3d
+
+ @staticmethod
+ def intersection_volume(r1, r2, R1, R2):
+ """
+ Calculate the volume of intersection between the spherical shell of
+ r1 <= r <= r2 and the cylinder of R1 <= R <= R2.
+
+ Reference: ref.[2], eq.(A1)
+ """
+ def trunc_pow(x, p):
+ if x <= 0.0:
+ return 0
+ else:
+ return x ** p
+ #
+ v_int = (4.0*np.pi/3.0) * (trunc_pow((r2**2 - R1**2), 1.5) -
+ trunc_pow((r2**2 - R2**2), 1.5) +
+ trunc_pow((r1**2 - R2**2), 1.5) -
+ trunc_pow((r1**2 - R1**2), 1.5))
+ return v_int
+
+
+def testProjection():
+ rout = np.array([1, 2, 3, 4, 5], dtype=float)
+ proj = Projection(rout)
+ n1 = np.array([1, 1, 1, 1, 1], dtype=float)
+ np.testing.assert_array_almost_equal(proj.deproject(proj.project(n1)), n1)
+ s2 = np.array([1, 1, 1, 1, 1], dtype=float)
+ np.testing.assert_array_almost_equal(proj.project(proj.deproject(s2)), s2)
+ print("All tests PASSED!")
+
+
+if __name__ == "__main__":
+ testProjection()