summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xciao_calc_bkg.py152
1 files changed, 152 insertions, 0 deletions
diff --git a/ciao_calc_bkg.py b/ciao_calc_bkg.py
new file mode 100755
index 0000000..cf5fdb5
--- /dev/null
+++ b/ciao_calc_bkg.py
@@ -0,0 +1,152 @@
+#!/usr/bin/env python3
+#
+# Calculate the *background surface brightness (SB)* level from the
+# *corrected background spectrum*.
+# The calculated background SB value is used to provide constraint for
+# surface brightness profile (SBP) fitting, and is also adopted to
+# subtract the background contribution before carrying out the SBP
+# deprojection.
+#
+# Weitian LI
+# Created: 2016-06-10
+# Updated: 2016-06-10
+#
+
+import argparse
+import subprocess
+import tempfile
+import json
+from collections import OrderedDict
+
+import numpy as np
+from astropy.io import fits
+
+
+def energy2channel(energy):
+ """
+ Convert energy (eV) to Chandra ACIS channel number.
+
+ Reference: http://cxc.harvard.edu/ciao/dictionary/pi.html
+ """
+ return int((energy / 14.6) + 1)
+
+
+def parse_erange(erange):
+ """
+ Parse the given erange string, and return the lower and upper energies.
+ """
+ e_low, e_high = map(float, erange.split(":"))
+ return (e_low, e_high)
+
+
+def calc_exp(expmap, regfile):
+ """
+ Calculate the area of the background spectrum extraction region,
+ and the mean exposure (used as the MEAN_SRC_EXPOSURE) of that region.
+ """
+ tf = tempfile.NamedTemporaryFile()
+ cmd_args = [
+ "dmextract",
+ "infile=%s[bin sky=region(%s)]" % (expmap, regfile),
+ "outfile=%s" % tf.name,
+ "opt=generic", "clobber=yes"
+ ]
+ subprocess.run(["punlearn", "dmextract"])
+ subprocess.run(args=cmd_args)
+ with fits.open(tf.name) as hist_fits:
+ total_exp = hist_fits["HISTOGRAM"].data["COUNTS"][0]
+ total_exp_err = hist_fits["HISTOGRAM"].data["ERR_COUNTS"][0]
+ area = hist_fits["HISTOGRAM"].data["AREA"][0]
+ mean_exp = hist_fits["HISTOGRAM"].data["SUR_BRI"][0]
+ mean_exp_err = hist_fits["HISTOGRAM"].data["SUR_BRI_ERR"][0]
+ tf.close()
+ return {
+ "total_exp": total_exp,
+ "total_exp_err": total_exp_err,
+ "area": area,
+ "mean_exp": mean_exp,
+ "mean_exp_err": mean_exp_err,
+ }
+
+
+def calc_spec_counts(spec, erange):
+ """
+ Calculate the spectrum total counts within the specified energy range.
+ Also extract the EXPOSURE and BACKSCAL information.
+ """
+ specfits = fits.open(spec)
+ channel = specfits["SPECTRUM"].data["CHANNEL"]
+ counts = specfits["SPECTRUM"].data["COUNTS"]
+ channel_low, channel_high = map(energy2channel, erange)
+ chan_idx = np.where(np.logical_and(channel >= channel_low,
+ channel <= channel_high))
+ total_counts = np.sum(counts[chan_idx])
+ return {
+ "energy_low": erange[0],
+ "energy_high": erange[1],
+ "channel_low": channel_low,
+ "channel_high": channel_high,
+ "counts": int(total_counts),
+ "exposure": specfits["SPECTRUM"].header["EXPOSURE"],
+ "backscal": specfits["SPECTRUM"].header["BACKSCAL"],
+ }
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Calculate the background surface brightness")
+ parser.add_argument("-b", "--orig-bkg", dest="orig_bkg", required=True,
+ help="original/uncorrected background spectrum " +
+ "(e.g., blanksky_lbkg.pi), from which to get the " +
+ "original EXPOSURE and BACKSCAL, etc.")
+ parser.add_argument("-B", "--corr-bkg", dest="corr_bkg", required=True,
+ help="corrected background spectrum for the " +
+ "Galactic and cosmic background radiations " +
+ "(e.g., bkgcorr_blanksky_lbkg.pi)")
+ parser.add_argument("-r", "--bkg-region", dest="bkg_region", required=True,
+ help="region used to extract the background " +
+ "spectrum (e.g., lbkg.reg")
+ parser.add_argument("-e", "--expmap", dest="expmap", required=True,
+ help="exposure map w.r.t the spectrum")
+ parser.add_argument("-E", "--erange", dest="erange", required=True,
+ help="energy range used for the exposure map " +
+ "(e.g., 700:7000)")
+ parser.add_argument("-o", "--outfile", dest="outfile",
+ required=False, default="sb_bkg.json",
+ help="json file to save the background SB results")
+ args = parser.parse_args()
+
+ e_low, e_high = parse_erange(args.erange)
+ orig_bkg_results = calc_spec_counts(args.orig_bkg, erange=(e_low, e_high))
+ corr_bkg_results = calc_spec_counts(args.corr_bkg, erange=(e_low, e_high))
+ exp_results = calc_exp(args.expmap, regfile=args.bkg_region)
+
+ counts = corr_bkg_results["counts"]
+ exposure = corr_bkg_results["exposure"]
+ backscal = corr_bkg_results["backscal"]
+ orig_backscal = orig_bkg_results["backscal"]
+ mean_exp = exp_results["mean_exp"]
+ bkg_sb = counts / exposure / mean_exp / backscal * orig_backscal
+
+ results = OrderedDict([
+ ("energy_low", e_low),
+ ("energy_high", e_high),
+ ("channel_low", corr_bkg_results["channel_low"]),
+ ("channel_high", corr_bkg_results["channel_high"]),
+ ("counts", counts),
+ ("exposure", exposure),
+ ("backscal", backscal),
+ ("total_exp", exp_results["total_exp"]),
+ ("total_exp_err", exp_results["total_exp_err"]),
+ ("area", exp_results["area"]),
+ ("mean_exp", exp_results["mean_exp"]),
+ ("mean_exp_err", exp_results["mean_exp_err"]),
+ ("bkg_sb", bkg_sb),
+ ])
+ results_json = json.dumps(results, indent=2)
+ print(results_json)
+ open(args.outfile, "w").write(results_json+"\n")
+
+
+if __name__ == "__main__":
+ main()