1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Aaron LI
# Created: 2016-04-26
# Updated: 2016-05-18
#
# Change log:
# 2016-05-18:
# * Update output results
# 2016-05-17:
# * Add argument "--subtract-bkg" and consider background subtraction
# * Add argument "--r500-cut" and `rcut` support
# 2016-05-06:
# * Add function `estimate_excess_error()` to estimate uncertainty
# * update according to `sbp_fit` renamed to `fit_sbp`
# * PEP8 fixes
#
"""
Calculate the central brightness excess value and ratio with respect to the
fitted SBP model (i.e., single-beta model).
NOTE:
* excess value: brightness_observed - brightness_model_predicted
* excess ratio: excess_value / brightness_observed
"""
import sys
import argparse
import json
from collections import OrderedDict
import numpy as np
from configobj import ConfigObj
from fit_sbp import make_model, make_sbpfit
__version__ = "0.3.2"
__date__ = "2016-05-18"
def calc_excess(data, fitted_model, rcut=None,
subtract_bkg=False, verbose=False):
"""
Calculate the central brightness excess value and ratio with respect
to the fitted SBP model (single-beta).
TODO/XXX:
* whether to interpolate the SBP?
Arguments:
* data: raw 4-column SBP data
* fitted_model: fitted SBP model
* rcut: cut radius for total/integrated brightness calculation;
if rcut larger than the maximum available radius, then
use the maximum radius instead.
* subtract_bkg: whether subtract the fitted background?
"""
radii = data[:, 0]
radii_err = data[:, 1]
brightness = data[:, 2]
brightness_model = fitted_model.f(radii)
rin = radii - radii_err
rout = radii + radii_err
if rcut is not None and rcut < rout[-1]:
ncut = np.sum(rin <= rcut)
rin = rin[:ncut]
rout = rout[:ncut]
rout[-1] = rcut
brightness = brightness[:ncut]
brightness_model = brightness_model[:ncut]
if verbose:
print("DEBUG: rcut:", rcut, file=sys.stderr)
print("DEBUG: ncut:", ncut, file=sys.stderr)
print("DEBUG: rin:", rin, file=sys.stderr)
print("DEBUG: rout:", rout, file=sys.stderr)
else:
rcut = rout[-1]
if subtract_bkg:
bkg = fitted_model.get_param("bkg").value
if verbose:
print("Subtract fitted background: %g" % bkg)
brightness -= bkg
brightness_model -= bkg
areas = np.pi * (rout**2 - rin**2)
bsum_obs = np.sum(brightness * areas)
bsum_model = np.sum(brightness_model * areas)
excess_value = bsum_obs - bsum_model
excess_ratio = excess_value / bsum_obs
excess = {
"excess_rcut": rcut,
"subtract_bkg": subtract_bkg,
"brightness_obs": bsum_obs,
"brightness_model": bsum_model,
"excess_value": excess_value,
"excess_ratio": excess_ratio,
}
return excess
def estimate_excess_error(data, sbpfit, mctimes, rcut=None,
subtract_bkg=False, verbose=False):
"""
Estimate the uncertainty of central excess value by Monte Carlo method.
XXX/TODO:
* whether also consider the uncertainty of R500?
Arguments:
* data: 4-column SBP data (radius, r_err, brightness, brightness_err)
* sbpfit: `SbpFit` object used to perform SBP fitting
* mctimes: number of Monte Carlo iterations
"""
brightness = data[:, 2]
brightness_err = data[:, 3]
params = sbpfit.dump_params()
ev_results = []
er_results = []
if verbose:
print("Estimating excess uncertainty by Monte Carlo " +
"(%d times) ..." % mctimes, end="", flush=True)
for i in range(mctimes):
if verbose and i % 100 == 0:
print("%d..." % i, end="", flush=True)
# randomize SBP data
brightness_rand = np.random.normal(brightness, scale=brightness_err)
sbpdata_rand = data.copy()
sbpdata_rand[:, 2] = brightness_rand
# load randomized data and perform SBP fit
sbpfit.reset(keep_source=True)
sbpfit.load_data(sbpdata_rand, keep_mask=True)
sbpfit.load_params(params)
sbpfit.fit()
model_rand = sbpfit.get_model()
excess = calc_excess(data=sbpdata_rand, fitted_model=model_rand,
rcut=rcut, subtract_bkg=subtract_bkg,
verbose=False)
ev_results.append(excess["excess_value"])
er_results.append(excess["excess_ratio"])
if verbose:
print("DONE!", flush=True)
ev_mean = np.mean(ev_results)
ev_std = np.std(ev_results)
ev_q25, ev_median, ev_q75 = np.percentile(ev_results, q=(25, 50, 75))
er_mean = np.mean(er_results)
er_std = np.std(er_results)
er_q25, er_median, er_q75 = np.percentile(er_results, q=(25, 50, 75))
results = {
"excess_value_mean": ev_mean,
"excess_value_median": ev_median,
"excess_value_q25": ev_q25,
"excess_value_q75": ev_q75,
"excess_value_std": ev_std,
"excess_ratio_mean": er_mean,
"excess_ratio_median": er_median,
"excess_ratio_q25": er_q25,
"excess_ratio_q75": er_q75,
"excess_ratio_std": er_std,
}
return results
def main():
# default arguments
default_outfile = "excess.json"
default_mctimes = 1000
parser = argparse.ArgumentParser(
description="Calculate the central brightness excess value",
epilog="Version: %s (%s)" % (__version__, __date__))
parser.add_argument("-V", "--version", action="version",
version="%(prog)s " +
"%s (%s)" % (__version__, __date__))
parser.add_argument("-v", "--verbose", dest="verbose",
required=False, action="store_true",
help="show verbose information")
parser.add_argument("-m", "--mctimes", dest="mctimes", required=False,
type=int, default=default_mctimes,
help="number of MC times to estimate excess error " +
"(default: %d)" % default_mctimes)
parser.add_argument("-R", "--r500-cut", dest="r500_cut",
type=float, default=0.5,
help="fraction of R500 to be taken as the cut " +
"radius for total brightness calculation " +
"(default: 0.5)")
parser.add_argument("-B", "--subtract-bkg", dest="subtract_bkg",
action="store_true",
help="subtract the fitted background and calculate " +
"the net brightness")
parser.add_argument("config", help="Config file for SBP fitting")
parser.add_argument("outfile", nargs="?", default=default_outfile,
help="Output json file to save the results " +
"(default: %s)" % default_outfile)
args = parser.parse_args()
config = ConfigObj(args.config)
r500_pix = float(config["r500_pix"])
rcut = args.r500_cut * r500_pix
modelname = config["model"]
config_model = config[modelname]
model = make_model(config, modelname=modelname)
print("SBP model: %s" % model.long_name, file=sys.stderr)
sbpfit_outfile = config.get("outfile")
sbpfit_outfile = config_model.get("outfile", sbpfit_outfile)
sbpfit_results = json.load(open(sbpfit_outfile),
object_pairs_hook=OrderedDict)
# Load fitted parameters for model
for pname, pvalue in sbpfit_results["params"].items():
model.set_param(name=pname, value=pvalue[0])
sbpfit = make_sbpfit(config, model=model)
sbpdata = np.loadtxt(config["sbpfile"])
excess = calc_excess(data=sbpdata, fitted_model=model, rcut=rcut,
subtract_bkg=args.subtract_bkg,
verbose=args.verbose)
excess_err = estimate_excess_error(data=sbpdata, sbpfit=sbpfit,
mctimes=args.mctimes, rcut=rcut,
subtract_bkg=args.subtract_bkg,
verbose=args.verbose)
excess_data = OrderedDict([
("name", config["name"]),
("obsid", int(config["obsid"])),
("model", modelname),
("excess_rcut", excess["excess_rcut"]),
("subtract_bkg", excess["subtract_bkg"]),
("brightness_obs", excess["brightness_obs"]),
("brightness_model", excess["brightness_model"]),
("excess_value", excess["excess_value"]),
("excess_value_mean", excess_err["excess_value_mean"]),
("excess_value_median", excess_err["excess_value_median"]),
("excess_value_q25", excess_err["excess_value_q25"]),
("excess_value_q75", excess_err["excess_value_q75"]),
("excess_value_std", excess_err["excess_value_std"]),
("excess_ratio", excess["excess_ratio"]),
("excess_ratio_mean", excess_err["excess_ratio_mean"]),
("excess_ratio_median", excess_err["excess_ratio_median"]),
("excess_ratio_q25", excess_err["excess_ratio_q25"]),
("excess_ratio_q75", excess_err["excess_ratio_q75"]),
("excess_ratio_std", excess_err["excess_ratio_std"]),
("mc_times", args.mctimes),
])
excess_data_json = json.dumps(excess_data, indent=2)
print(excess_data_json)
open(args.outfile, "w").write(excess_data_json+"\n")
if __name__ == "__main__":
main()
# vim: set ts=4 sw=4 tw=0 fenc=utf-8 ft=python: #
|