1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
#!/usr/bin/env python3
#
# Calculate the *background surface brightness (SB)* level from the
# *corrected background spectrum*.
# The calculated background SB value is used to provide constraint for
# surface brightness profile (SBP) fitting, and is also adopted to
# subtract the background contribution before carrying out the SBP
# deprojection.
#
# Weitian LI
# Created: 2016-06-10
# Updated: 2016-06-10
#
import argparse
import subprocess
import tempfile
import json
from collections import OrderedDict
import numpy as np
from astropy.io import fits
def energy2channel(energy):
"""
Convert energy (eV) to Chandra ACIS channel number.
Reference: http://cxc.harvard.edu/ciao/dictionary/pi.html
"""
return int((energy / 14.6) + 1)
def parse_erange(erange):
"""
Parse the given erange string, and return the lower and upper energies.
"""
e_low, e_high = map(float, erange.split(":"))
return (e_low, e_high)
def calc_exp(expmap, regfile):
"""
Calculate the area of the background spectrum extraction region,
and the mean exposure (un-normalized w.r.t exposure time) of that region.
"""
tf = tempfile.NamedTemporaryFile()
cmd_args = [
"dmextract",
"infile=%s[bin sky=region(%s)]" % (expmap, regfile),
"outfile=%s" % tf.name,
"opt=generic", "clobber=yes"
]
subprocess.run(["punlearn", "dmextract"])
subprocess.run(args=cmd_args)
with fits.open(tf.name) as hist_fits:
total_exp = hist_fits["HISTOGRAM"].data["COUNTS"][0]
total_exp_err = hist_fits["HISTOGRAM"].data["ERR_COUNTS"][0]
area = hist_fits["HISTOGRAM"].data["AREA"][0]
mean_exp = hist_fits["HISTOGRAM"].data["SUR_BRI"][0]
mean_exp_err = hist_fits["HISTOGRAM"].data["SUR_BRI_ERR"][0]
tf.close()
return {
"total_exp": total_exp,
"total_exp_err": total_exp_err,
"area": area,
"mean_exp": mean_exp,
"mean_exp_err": mean_exp_err,
}
def calc_spec_counts(spec, erange):
"""
Calculate the spectrum total counts within the specified energy range.
Also extract the EXPOSURE and BACKSCAL information.
"""
specfits = fits.open(spec)
channel = specfits["SPECTRUM"].data["CHANNEL"]
counts = specfits["SPECTRUM"].data["COUNTS"]
channel_low, channel_high = map(energy2channel, erange)
chan_idx = np.where(np.logical_and(channel >= channel_low,
channel <= channel_high))
total_counts = np.sum(counts[chan_idx])
return {
"energy_low": erange[0],
"energy_high": erange[1],
"channel_low": channel_low,
"channel_high": channel_high,
"counts": int(total_counts),
"exposure": specfits["SPECTRUM"].header["EXPOSURE"],
"backscal": specfits["SPECTRUM"].header["BACKSCAL"],
}
def main():
parser = argparse.ArgumentParser(
description="Calculate the background surface brightness")
parser.add_argument("-b", "--orig-bkg", dest="orig_bkg", required=True,
help="original/uncorrected local background " +
"spectrum (e.g., lbkg.pi), from which to get the " +
"original/source EXPOSURE and BACKSCAL, etc.")
parser.add_argument("-B", "--corr-bkg", dest="corr_bkg", required=True,
help="corrected background spectrum for the " +
"Galactic and cosmic background radiations " +
"(e.g., bkgcorr_blanksky_lbkg.pi)")
parser.add_argument("-r", "--bkg-region", dest="bkg_region", required=True,
help="region used to extract the background " +
"spectrum (e.g., lbkg.reg")
parser.add_argument("-e", "--expmap", dest="expmap", required=True,
help="exposure map w.r.t the spectrum")
parser.add_argument("-E", "--erange", dest="erange", required=True,
help="energy range used for the exposure map " +
"(e.g., 700:7000)")
parser.add_argument("-o", "--outfile", dest="outfile",
required=False, default="sb_bkg.json",
help="json file to save the background SB results")
args = parser.parse_args()
e_low, e_high = parse_erange(args.erange)
orig_bkg_results = calc_spec_counts(args.orig_bkg, erange=(e_low, e_high))
corr_bkg_results = calc_spec_counts(args.corr_bkg, erange=(e_low, e_high))
exp_results = calc_exp(args.expmap, regfile=args.bkg_region)
corr_counts = corr_bkg_results["counts"]
corr_exposure = corr_bkg_results["exposure"]
corr_backscal = corr_bkg_results["backscal"]
orig_exposure = orig_bkg_results["exposure"]
orig_backscal = orig_bkg_results["backscal"]
area = exp_results["area"]
mean_exp = exp_results["mean_exp"]
bkg_sb = corr_counts / corr_exposure / (mean_exp / orig_exposure) \
/ (area * corr_backscal / orig_backscal)
results = OrderedDict([
("energy_low", e_low),
("energy_high", e_high),
("channel_low", corr_bkg_results["channel_low"]),
("channel_high", corr_bkg_results["channel_high"]),
("counts", corr_counts),
("exposure", orig_exposure),
("exposure_bkg", corr_exposure),
("backscal", corr_backscal),
("total_exp", exp_results["total_exp"]),
("total_exp_err", exp_results["total_exp_err"]),
("area", exp_results["area"]),
("mean_exp", exp_results["mean_exp"]),
("mean_exp_err", exp_results["mean_exp_err"]),
("bkg_sb", bkg_sb),
])
results_json = json.dumps(results, indent=2)
print(results_json)
open(args.outfile, "w").write(results_json+"\n")
if __name__ == "__main__":
main()
|