1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
#!/usr/bin/env python3
#
# Copyright (c) 2016 Aaron LI
# MIT license
#
# Calculate the surface brightness concentration (i.e., C_{SB}), which
# is an index/indicator of the cool core, and may be defined as:
# (1) brightness(<=40kpc) / brightness(<=400kpc)
# (2) brightness(<=0.048R500) / brightness(<=0.45R500)
#
# References:
# [1] Santos, J. S., Rosati, P., Tozi, P., et al. 2008, A&A, 483, 35
#
# Created: 2016-04-28
#
# Change log:
# 2016-06-07:
# * Update function `calc_csb()`
# 2016-05-16:
# * Add some background subtraction support
# * Use `subprocess.run` instead of `subprocess.call`
# * PEP8 fixes
# 2016-04-29:
# * Fix order of executing ds9 and print message
# * Fix C_SB calculation
# * Add reference
# * Fix "cuspiness" to "concentration"
# * Add "name" and "obsid" to results
# 2016-04-28:
# * Add "csb_type" to results
#
# TODO/XXX:
# whether the background should be subtracted for C_SB calculation??
#
import sys
import os
import glob
import json
import argparse
import subprocess
from collections import OrderedDict
from astropy.io import fits
from make_r500_regions import get_r500, get_center
def make_csb_region(regfile, center, r1, r2):
"""
Make the regions for C_SB and save.
"""
regions = [
"pie(%.2f,%.2f,0,%.2f,0,360)" % (center[0], center[1], r1),
"pie(%.2f,%.2f,0,%.2f,0,360)" % (center[0], center[1], r2),
]
open(regfile, "w").write("\n".join(regions) + "\n")
def calc_csb(infile, expmap, regfile, r1, r2, bkg=None):
"""
Calculate the C_SB
If `bkg` is provided, then background subtraction is considered
for `dmextract` to calculate the *net* counts and surface brightness.
"""
csbfile = os.path.splitext(regfile)[0] + ".fits"
cmd_args = [
"dmextract",
"infile=%s[bin sky=@%s]" % (infile, regfile),
"outfile=%s" % csbfile,
"exp=%s" % expmap,
"opt=generic", "clobber=yes"
]
if bkg is not None:
# consider background subtraction
subprocess.run(["punlearn", "dmkeypar"])
ret = subprocess.run(args=["dmkeypar", infile, "EXPOSURE", "echo=yes"],
check=True, stdout=subprocess.PIPE)
exposure_evt = float(ret.stdout.decode("utf-8"))
ret = subprocess.run(args=["dmkeypar", bkg, "EXPOSURE", "echo=yes"],
check=True, stdout=subprocess.PIPE)
exposure_bkg = float(ret.stdout.decode("utf-8"))
bkg_norm = exposure_evt / exposure_bkg
cmd_args += [
"bkg=%s[bin sky=@%s]" % (bkg, regfile),
"bkgnorm=%s" % bkg_norm,
"bkgexp=)exp"
]
subprocess.run(["punlearn", "dmextract"])
subprocess.run(args=cmd_args)
# read calculate C_SB data from output FITS
with fits.open(csbfile) as csb_fits:
csb_s_val = csb_fits["HISTOGRAM"].data["SUR_BRI"]
csb_s_err = csb_fits["HISTOGRAM"].data["SUR_BRI_ERR"]
# if bkg is not None:
# bkg_csb_s_val = csb_fits["HISTOGRAM"].data["BG_SUR_BRI"]
# bkg_csb_s_err = csb_fits["HISTOGRAM"].data["BG_SUR_BRI_ERR"]
# calculate C_SB and error
area_ratio = (r2 / r1) ** 2
csb = csb_s_val[0] / csb_s_val[1] / area_ratio
csb_err = csb * ((csb_s_err[0] / csb_s_val[0])**2 +
(csb_s_err[1] / csb_s_val[1])**2) ** 0.5
results = OrderedDict([
("csb_s1", csb_s_val[0]),
("csb_s1_err", csb_s_err[0]),
("csb_s2", csb_s_val[1]),
("csb_s2_err", csb_s_err[1]),
("csb", csb),
("csb_err", csb_err),
])
return results
def main():
parser = argparse.ArgumentParser(
description="Calculate the surface brightness concentration")
# exclusive argument group for C_SB definition
grp_csb = parser.add_mutually_exclusive_group(required=True)
grp_csb.add_argument("-K", "--kpc", dest="kpc", action="store_true",
help="C_SB = brightness(<=0.048R500) " +
"/ brightness(<=0.45R500)")
grp_csb.add_argument("-R", "--r500", dest="r500", action="store_true",
help="C_SB = brightness(<=40kpc) " +
"/ brightness(<=400kpc)")
#
parser.add_argument("-A", "--no-ask", dest="no_ask",
required=False, action="store_true",
help="do NOT check region and ask")
parser.add_argument("-j", "--json", dest="json", required=False,
help="the *_INFO.json file " +
"(default: find ../*_INFO.json)")
parser.add_argument("-r", "--region", dest="region",
required=False, default="sbprofile.reg",
help="region from which to extract the center " +
"coordinate (default: sbprofile.reg)")
parser.add_argument("-i", "--infile", dest="infile", required=True,
help="binned image used to calculate the C_SB")
parser.add_argument("-e", "--expmap", dest="expmap", required=True,
help="exposure map of the input image")
parser.add_argument("-b", "--bkg", dest="bkg", default=None,
help="background image with respect to the input file")
parser.add_argument("-o", "--outfile", dest="outfile", required=True,
help="output json file to store the C_SB results")
#
args = parser.parse_args()
# default "*_INFO.json"
info_json = glob.glob("../*_INFO.json")[0]
if args.json:
info_json = args.json
json_str = open(info_json).read().rstrip().rstrip(",")
info = json.loads(json_str)
name = info["Source Name"]
obsid = int(info["Obs. ID"])
r500 = get_r500(info)
r500_kpc = r500["r500_kpc"]
r500_pix = r500["r500_pix"]
kpc_per_pix = r500["kpc_per_pix"]
print("R500: %.2f (kpc), %.2f (pixel)" % (r500_kpc, r500_pix))
# get center coordinate
xc, yc = get_center(args.region)
if args.r500:
csb_type = "r500"
r1 = 0.048 * r500_pix
r2 = 0.450 * r500_pix
elif args.kpc:
csb_type = "kpc"
r1 = 40.0 / kpc_per_pix
r2 = 400.0 / kpc_per_pix
else:
raise ValueError("Unknown C_SB definition")
# make regions for C_SB
regfile = os.path.splitext(args.outfile)[0] + ".reg"
make_csb_region(regfile, center=(xc, yc), r1=r1, r2=r2)
# check region with DS9
if not args.no_ask:
print("Check the C_SB regions; overwrite the region file " +
"'%s' if modified" % regfile, flush=True, file=sys.stderr)
cmd = "ds9 %s -cmap he " % args.infile + \
"-regions format ciao -regions %s" % regfile
subprocess.call(cmd, shell=True)
ans = input("C_SB regions exceed CCD (No/yes/modified)? ")
if ans == "" or ans[0] in "nN":
csb_region_note = "OK"
elif ans[0] in "yY":
csb_region_note = "EXCESS"
elif ans[0] in "mM":
csb_region_note = "MODIFIED"
else:
csb_region_note = "???"
else:
csb_region_note = None
# calculate the C_SB
csb = calc_csb(args.infile, expmap=args.expmap,
regfile=regfile, r1=r1, r2=r2, bkg=args.bkg)
csb_data = OrderedDict([
("name", name),
("obsid", obsid),
("csb_type", csb_type),
("csb_r1", r1),
("csb_r2", r2),
])
csb_data.update(csb)
csb_data["csb_region"] = csb_region_note
csb_data_json = json.dumps(csb_data, indent=2)
print(csb_data_json)
open(args.outfile, "w").write(csb_data_json + "\n")
if __name__ == "__main__":
main()
|