1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
#!/usr/bin/env python3
#
# Copyright (c) 2016 Aaron LI
# MIT license
#
# Extract surface brightness profile, with optional background
# subtraction and region exclusion.
#
# The input file can be the following 2 cases:
# (1) (RECOMMENDED) binned image file:
# e.g., the binned 0.7-7.0 keV image with its dimensions determined
# by the `skyfov.fits` file.
# Use this type of input file is recommended, as the required exposure
# map is also an image and thus has identical dimensions with the input
# image, therefore, the extraction region area can be accurately
# calculated with both the excluded point sources and the regions
# beyond the CCD edges accounted. And the final extracted surface
# brightness results (`SUR_FLUX`) will not be biased due to the regions
# lying beyond the CCD edges.
# In addition, using image as the input is also much faster.
# (2) events file (evt2):
# e.g., the cleaned evt2 file
# If the extraction region is beyond the CCD edges, the source extraction
# region will be *bigger* than the region for `MEAN_SRC_EXP` calculation,
# because the exposure image has specific boundaries while the events file
# dose not. In consequence, the final `SUR_FLUX` will be under-estimated.
# As a workaround, the original extraction regions need additional
# process that intersect with the CCD boundaries (extracted from the
# `skyfov.fits`).
#
# Created: 2016-05-17
#
# Change log:
# 2016-06-07:
# * Remove unused argument `--json`
# 2016-06-06:
# * Add explanations on image/evt2 input file
#
import os
import re
import argparse
import subprocess
import tempfile
import numpy as np
from astropy.io import fits
def check_acis_type(infile):
"""
Check the ACIS type of the infile: ACIS-I or ACIS-S
"""
subprocess.run(["punlearn", "dmkeypar"])
ret = subprocess.run(["dmkeypar", infile, "DETNAM", "echo=yes"],
check=True, stdout=subprocess.PIPE)
detnam = ret.stdout.decode("utf-8")
if re.match(r"^ACIS-0123[4-9]*", detnam):
results = {"type": "ACIS-I", "ccd": "0:3"}
elif re.match(r"^ACIS-[0-6]*7", detnam):
results = {"type": "ACIS-S", "ccd": "7"}
else:
raise ValueError("unknown DETNAM: %s" % detnam)
return results
def make_sbp_region(regfile, exclude_regfile=None, fov=None, ccd=None):
"""
Make the regions for SBP extraction, considering the regions to be
excluded and FoV constraint.
Return a list containing all the SBP regions.
"""
regions = map(str.strip, open(regfile).readlines())
regions = list(filter(lambda x: re.match(r"^(circle|annulus|pie).*",
x, re.I),
regions))
if exclude_regfile is not None:
ex_regions = map(str.strip, open(exclude_regfile).readlines())
ex_regions = list(filter(lambda x: not re.match(r"^\s*(|#.*)\s*$", x),
ex_regions))
ex_regions = "*!".join([""] + ex_regions)
regions = [reg+ex_regions for reg in regions]
if fov is not None:
with tempfile.NamedTemporaryFile() as fp:
subprocess.run(["punlearn", "dmmakereg"])
subprocess.run(args=[
"dmmakereg",
"region=region(%s[ccd_id=%s])" % (fov, ccd),
"outfile=%s" % fp.name,
"kernel=ascii",
"clobber=yes"
])
fov_regions = map(str.strip, open(fp.name).readlines())
fov_regions = list(filter(lambda x: re.match(r"^physical;polygon.*$",
x, re.I),
fov_regions))
fov_regions = [re.sub(r"^physical;\s*", "",
re.sub(r"\s*#\s*$", "", reg))
for reg in fov_regions]
regions = [
"+".join([
reg + "*" + fov for fov in fov_regions
])
for reg in regions
]
return regions
def extract_sbp(infile, expmap, regfile, outprefix, bkg=None, erange=None):
"""
Extract the surface brightness profile
If `bkg` is provided, then background subtraction is considered.
"""
if erange is not None:
erange = "[energy=%s]" % erange
else:
erange = ""
sbpfile = outprefix + ".fits"
cmd_args = [
"dmextract",
"infile=%s%s[bin sky=@%s]" % (infile, erange, regfile),
"outfile=%s" % sbpfile,
"exp=%s" % expmap,
"opt=generic",
"clobber=yes"
]
if bkg is not None:
# consider background subtraction
subprocess.run(["punlearn", "dmkeypar"])
ret = subprocess.run(args=["dmkeypar", infile, "EXPOSURE", "echo=yes"],
check=True, stdout=subprocess.PIPE)
exposure_evt = float(ret.stdout.decode("utf-8"))
ret = subprocess.run(args=["dmkeypar", bkg, "EXPOSURE", "echo=yes"],
check=True, stdout=subprocess.PIPE)
exposure_bkg = float(ret.stdout.decode("utf-8"))
bkg_norm = exposure_evt / exposure_bkg
cmd_args += [
"bkg=%s%s[bin sky=@%s]" % (bkg, erange, regfile),
"bkgnorm=%s" % bkg_norm,
"bkgexp=)exp"
]
subprocess.run(["punlearn", "dmextract"])
subprocess.run(args=cmd_args)
# add `RMID` and `R_ERR` columns
sbpfile_rmid = outprefix + "_rmid.fits"
subprocess.run(["punlearn", "dmtcalc"])
subprocess.run(args=[
"dmtcalc",
"infile=%s" % sbpfile,
"outfile=%s" % sbpfile_rmid,
"expression=RMID=(R[0]+R[1])/2,R_ERR=(R[1]-R[0])/2",
"clobber=yes"
])
# dump SBP data
with fits.open(sbpfile_rmid) as sbpfits:
rmid = sbpfits["HISTOGRAM"].data["RMID"]
r_err = sbpfits["HISTOGRAM"].data["R_ERR"]
sur_flux = sbpfits["HISTOGRAM"].data["SUR_FLUX"]
sur_flux_err = sbpfits["HISTOGRAM"].data["SUR_FLUX_ERR"]
sbpdata = np.column_stack([rmid, r_err, sur_flux, sur_flux_err])
sbp_txt = outprefix + ".txt"
np.savetxt(sbp_txt, sbpdata, header="RMID R_ERR SUR_FLUX SUR_FLUX_ERR")
# create a QDP file
sbp_qdp = map(str.strip, open(sbp_txt).readlines())
sbp_qdp = [re.sub(r"#", "!", line) for line in sbp_qdp]
sbp_qdp = [
"READ SERR 1 2",
'LABEL T "Surface Brightness Profile"',
'LABEL X "Radius (pixel)"',
'LABEL Y "Surface Flux (photons/cm\\u2\\d/pixel\\u2\\d/s)"',
"LOG X Y ON"
] + sbp_qdp
open(outprefix + ".qdp", "w").write("\n".join(sbp_qdp) + "\n")
def main():
parser = argparse.ArgumentParser(
description="Extract surface brightness profile")
parser.add_argument("-r", "--region", dest="region",
required=False, default="sbprofile.reg",
help="surface brightness profile region file " +
"(default: sbprofile.reg)")
parser.add_argument("-R", "--exclude-region", dest="exclude_region",
default=None,
help="file containing regions to be excluded")
parser.add_argument("-i", "--infile", dest="infile", required=True,
help="input binned image (RECOMMENDED) or EVT2 file")
parser.add_argument("-e", "--expmap", dest="expmap", required=True,
help="exposure map of the input file")
parser.add_argument("-b", "--bkg", dest="bkg", default=None,
help="background event/image of the input file")
parser.add_argument("-E", "--erange", dest="erange", default=None,
help="energy range of interest (for input evt2 file)")
parser.add_argument("-F", "--fov", dest="fov", default=None,
help="FoV FITS file (for applying FoV constraint " +
"to the SBP regions; recommended if use " +
"evt2 file as the input file)")
parser.add_argument("-o", "--outprefix", dest="outprefix",
required=False,
help="prefix of output files (default: same " +
"basename as the input region file)")
args = parser.parse_args()
# set output prefix if not specified
if not args.outprefix:
args.outprefix = os.path.splitext(args.region)[0]
acis_type = check_acis_type(args.infile)
regions = make_sbp_region(regfile=args.region,
exclude_regfile=args.exclude_region,
fov=args.fov, ccd=acis_type["ccd"])
regfile_out = args.outprefix + "_fix.reg"
open(regfile_out, "w").write("\n".join(regions) + "\n")
extract_sbp(infile=args.infile, expmap=args.expmap,
regfile=regfile_out, outprefix=args.outprefix,
bkg=args.bkg, erange=args.erange)
if __name__ == "__main__":
main()
|