1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
|
#!/usr/bin/env python3
#
# Deproject the 2D surface brightness profile (SBP) into the 3D emission
# measure (EM) profile, using the non-parametric approach.
# And the 3D gas density profile can be further derived through the 3D
# EM profile by taking into account the variation of the cooling function
# Lambda(T, Z) with radius.
#
#
# References:
# [1] Croston et al. 2006, A&A, 459, 1007-1019
# [2] McLaughlin, 1999, ApJ, 117, 2398-2427
# [3] Bouchet, 1995, A&AS, 113, 167
#
#
# Weitian LI
# Created: 2016-06-10
# Updated: 2016-06-16
#
# Change logs:
# 2016-06-16:
# * Add methods 'save()', 'report()' and 'plot()' to class 'SBP'
# 2016-06-15:
# * Add command line arguments
# * Add class 'SBP' for SBP background subtraction and extrapolation
# 2016-06-14:
# * Add class 'PLCModel' based on 'FitModel'
# * Split class 'FitModel' from 'ABModel'
# 2016-06-13:
# * Add class 'ABModel' to support data scaling
# * Implement primitive SBP deprojection approach for class 'DeprojectSBP'
#
import argparse
import json
from collections import OrderedDict
import numpy as np
import pandas as pd
import scipy.optimize
import lmfit
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from configobj import ConfigObj
plt.style.use("ggplot")
class Projection:
"""
Class that deals with projection from 3D volume density to 2D
surface density and vice versa.
The inner-most shell/cylinder is assumed to at the center with inner
radius of ZERO.
"""
# number of shells/cylinders
N = 0
# inner and outer radii of each spherical shell or cylinders
rin = None
rout = None
# projection matrix from 3D volume density to 2D surface density
proj_mat = None
def __init__(self, rout):
self.N = len(rout)
self.rout = np.array(rout, dtype=float)
self.rin = np.concatenate([[0.0], self.rout[:-1]])
self.calc_projection_matrix()
def __str__(self):
return "%s: #%d shells: Rout(%s)" % (self.__class__.__name__,
self.N, self.rout)
def calc_projection_matrix(self):
"""
Calculate the projection matrix according to the given outer radii.
Arguments:
* rout: (vector) outer radius of each SB annulus or spherical shell
Return:
* proj_mat: (matrix) an upper triangular matrix with element
[i, j] indicate the fraction of the emission from
shell j that is observed in annulus i.
N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) =
\sum_{j=i}^{m} (n(R_{j-1}, R_j) *
V_int(R_{j-1}, R_j; R_{i-1}, R_i))
References:
* ref.[1], eq.(1)
* ref.[2], eq.(A2)
"""
proj_mat = np.zeros((self.N, self.N))
for i in range(self.N):
# loop over each annulus
rin = self.rin[i]
rout = self.rout[i]
area = np.pi * (rout**2 - rin**2)
for j in range(i, self.N):
# calculate the contribution from each shell to annulus i
rin2 = self.rin[j]
rout2 = self.rout[j]
v_int = self.intersection_volume(rin2, rout2, rin, rout)
proj_mat[i, j] = v_int / area
self.proj_mat = proj_mat
def project(self, densities):
"""
Project the given 3D (volume) densities to 2D (surface) densities,
using the calculated projection matrix: 'proj_mat'.
"""
densities = np.array(densities)
if self.rout.shape != densities.shape:
raise ValueError("different shapes of rout and given densities")
return self.proj_mat.dot(densities.T)
def deproject(self, densities):
"""
Revert the projection procedure, i.e., deproject the given 2D
(surface) densities to derive the 3D (volume) densities.
\curl{N}(R_{i-1}, R_i) = N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1})
n(R_{i-1}, R_i) =
(N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) /
V_int(R_{i-1}, R_i; R_{i-1}, R_i)) -
\sum_{j=i+1}^{m} (n(R_{j-1}, R_j) *
V_int(R_{j-1}, R_j; R_{i-1}, R_i) /
V_int(R_{i-1}, R_i; R_{i-1}, R_i))
Reference: ref.[2], eq.(A2)
"""
densities = np.array(densities)
if self.rout.shape != densities.shape:
raise ValueError("different shapes of rout and given densities")
n_3d = np.zeros(densities.shape)
# peel the onion: from outside inward
for i in reversed(range(self.N)):
rin = self.rin[i]
rout = self.rout[i]
area = np.pi * (rout**2 - rin**2)
v_int = self.intersection_volume(rin, rout, rin, rout)
n_3d[i] = densities[i] * area / v_int
# subtract the projections from the outer shells
for j in range(i+1, self.N):
rin2 = self.rin[j]
rout2 = self.rout[j]
v_int2 = self.intersection_volume(rin2, rout2, rin, rout)
n_3d[i] -= n_3d[j] * v_int2 / v_int
return n_3d
@staticmethod
def intersection_volume(r1, r2, R1, R2):
"""
Calculate the volume of intersection between the spherical shell of
r1 <= r <= r2 and the cylinder of R1 <= R <= R2.
Reference: ref.[2], eq.(A1)
"""
def trunc_pow(x, p):
if x <= 0.0:
return 0
else:
return x ** p
#
v_int = (4.0*np.pi/3.0) * (trunc_pow((r2**2 - R1**2), 1.5) -
trunc_pow((r2**2 - R2**2), 1.5) +
trunc_pow((r1**2 - R2**2), 1.5) -
trunc_pow((r1**2 - R1**2), 1.5))
return v_int
def testProjection():
rout = np.array([1, 2, 3, 4, 5], dtype=float)
proj = Projection(rout)
n1 = np.array([1, 1, 1, 1, 1], dtype=float)
np.testing.assert_array_almost_equal(proj.deproject(proj.project(n1)), n1)
s2 = np.array([1, 1, 1, 1, 1], dtype=float)
np.testing.assert_array_almost_equal(proj.project(proj.deproject(s2)), s2)
print("All tests PASSED!")
class FitModel:
"""
Base/Meta class for model fitting, with data and parameters scaling.
"""
name = ""
params = lmfit.Parameters()
# optimization method
fit_method = "lbfgsb"
# whether the 'ydata' and 'yerr' to be scaled in order to reduce
# the dynamical range for a more stable fitting
scale = False
scale_factor = 1.0
def __init__(self, fit_method="lbfgsb", params=None, scale=True):
self.fit_method = fit_method
if params is not None:
self.load_params(params)
self.scale = scale
@staticmethod
def model(x, params):
pass
def f(self, x):
return self.model(x, self.params) * self.scale_factor
def load_data(self, xdata, ydata=None, xerr=None, yerr=None,
update_params=False):
if xdata.ndim == 2 and xdata.shape[1] == 4:
# 4-column data
self.xdata = xdata[:, 0].copy()
self.xerr = xdata[:, 1].copy()
self.ydata = xdata[:, 2].copy()
self.yerr = xdata[:, 3].copy()
else:
self.xdata = np.array(xdata)
self.ydata = np.array(ydata)
self.xerr = np.array(xerr)
self.yerr = np.array(yerr)
self.scale_data(update_params=update_params)
def scale_data(self, update_params=False):
"""
Scale the ydata and yerr to reduce their dynamical ranges,
for a more stable model fitting.
"""
if self.scale:
y_min = np.min(self.ydata)
y_max = np.max(self.ydata)
self.scale_factor = np.exp(np.log(y_min*y_max) / 2)
self.ydata /= self.scale_factor
self.yerr /= self.scale_factor
if update_params:
self.scale_params()
def scale_params(self):
"""
Scale the paramters' min/max values accordingly.
"""
pass
def f_residual(self, params):
if self.yerr is None:
return self.model(self.xdata, params) - self.ydata
else:
return (self.model(self.xdata, params) - self.ydata) / self.yerr
def fit(self, method=None):
if method is None:
method = self.fit_method
self.fitter = lmfit.Minimizer(self.f_residual, self.params)
self.fitted = self.fitter.minimize(method=method)
self.load_params(self.fitted.params)
def get_param(self, name=None):
"""
Return the requested 'Parameter' object or the whole
'Parameters' object of no name supplied.
"""
try:
return self.params[name]
except KeyError:
return self.params
def set_param(self, name, *args, **kwargs):
"""
Set the properties of the specified parameter.
"""
param = self.params[name]
param.set(*args, **kwargs)
def dump_params(self, serialize=True):
"""
Dump the current values/settings for all model parameters,
and these dumped results can be later loaded by 'load_params()'.
"""
if serialize:
return self.params.dumps()
else:
return self.params.copy()
def load_params(self, params):
"""
Load the provided parameters values/settings.
"""
if isinstance(params, lmfit.parameter.Parameters):
self.params = params.copy()
else:
p = lmfit.parameter.Parameters()
p.loads(params)
self.params = p
class ABModel(FitModel):
"""
AB model is a modified version of the beta model, which can roughly
fit both centrally peaked and cored models, e.g., central excess emission.
References:
[1] Pratt & Arnaud, 2002, A&A, 394, 375; eq.(2)
[2] ref.[1], eq.(10)
"""
name = "AB model"
# model parameters
params = lmfit.Parameters()
params.add_many( # (name, value, vary, min, max, expr)
("A", 1.0e-9, True, 0.0, 1.0e-5, None),
("alpha", 0.7, True, 0.1, 1.1, None),
("rc", 30.0, True, 1.0, 1.0e4, None),
("beta", 0.7, True, 0.3, 1.1, None))
def scale_params(self):
A_min = 1.0
A_max = np.max(self.ydata)
self.set_param("A", value=(A_min+A_max)*0.5,
min=A_min, max=A_max)
@staticmethod
def model(x, params):
parvals = params.valuesdict()
A = parvals["A"]
alpha = parvals["alpha"]
rc = parvals["rc"]
beta = parvals["beta"]
return (A * np.power(x/rc, -alpha) *
np.power((1 + (x/rc)**2), -1.5*beta + 0.5*alpha))
class PLCModel(FitModel):
"""
PLC model consists of a powerlaw and an constant, that is used
to fit/approximate the outer SBP.
Therefore, the fitted constant is used to subtract the uniform
background from the SBP, and the fitted powerlaw index is used
to extrapolate the SBP in order to mitigate the deprojection
errors due to FoV limit.
NOTE:
I think the uniform background (i.e., by fitting the whole or
core-excluded SBP) should be subtracted from the SBP first, then
adopt this PLCModel to fit the outer part of SBP, with the 'bkg'
parameter fixed at zero.
"""
name = "PLC model"
# model parameters
params = lmfit.Parameters()
params.add_many( # (name, value, vary, min, max, expr)
("A", 1.0e-9, True, 0.0, 1.0e-5, None),
("rmin", 30.0, False, 1.0, 1.0e4, None),
("alpha", 1.6, True, 0.4, 2.8, None),
("bkg", 0.0, False, 0.0, 1.0e-5, None))
def load_data(self, xdata, ydata=None, xerr=None, yerr=None,
update_params=False):
super().load_data(xdata=xdata, ydata=ydata, xerr=xerr, yerr=yerr,
update_params=update_params)
self.set_param("rmin", value=np.min(xdata), vary=False)
def scale_params(self):
ymin = np.min(self.ydata)
ymax = np.max(self.ydata)
self.set_param("A", value=ymax, min=ymax/10.0, max=ymax*10.0)
self.set_param("bkg", value=ymin, min=0.0, max=ymin)
@staticmethod
def model(x, params):
parvals = params.valuesdict()
A = parvals["A"]
rmin = parvals["rmin"]
alpha = parvals["alpha"]
bkg = parvals["bkg"]
return A * np.power(x/rmin, -alpha) + bkg
class DeprojectSBP:
"""
Deproject the observed SBP to derive the 3D emission measure (EM)
profile, using a regularization technique.
TODO:
* add 'mask' support
* implement 'optimize_lbd()'
References: ref.[1]
"""
# input SBP data: [r, r_err, s, s_err]
r = None
r_err = None
s = None
s_err = None
# mask used to exclude specified data point for cross-validation
mask = None
# 'Projection' instance for this SBP
projector = None
# 'ABModel' instance to fit the deprojected EM profile for rescaling data
abmodel = None
# smoothing parameter to balance between fidelity (chisq) and
# consistency with the applied regularization constraint.
lbd = 1.0
# optimization method for scipy minimize
opt_method = "Powell"
# scipy optimize results from 'self.deproject()'
deproject_res = None
def __init__(self, r, r_err=None, s=None, s_err=None,
lbd=1.0, opt_method="Powell"):
self.load_data(r=r, r_err=r_err, s=s, s_err=s_err)
self.projector = Projection(rout=self.r+self.r_err)
self.abmodel = ABModel(scale=True)
self.lbd = lbd
self.opt_method = opt_method
def load_data(self, r, r_err=None, s=None, s_err=None):
if r.ndim == 2 and r.shape[1] == 4:
# 4-column data
self.r = r[:, 0].copy()
self.r_err = r[:, 1].copy()
self.s = r[:, 2].copy()
self.s_err = r[:, 3].copy()
else:
self.r = np.array(r)
self.r_err = np.array(r_err)
self.s = np.array(s)
self.s_err = np.array(s_err)
self.mask = np.ones(self.r.shape, dtype=np.bool)
def deproject(self, lbd=None, opt_method=None):
"""
Deproject the observed SBP to derive the 3D EM profile by
minimizing the objective function.
"""
def fobj(x):
return self.f_objective(x, scaled=True)
def callback(x):
# NOTE: 'x' here is the scaled EM solution
x_unscaled = self.unscale_data(x)
self.update_abmodel(x_unscaled)
if lbd is not None:
self.lbd = lbd
if opt_method is None:
opt_method = self.opt_method
# initial guess
em0 = self.projector.deproject(self.s)
# scale the EM data to reduce the dynamical range
em0_scaled = self.scale_data(em0, update_params=True)
res = scipy.optimize.minimize(fun=fobj, x0=em0_scaled,
method=opt_method,
callback=callback,
options={"disp": True})
self.deproject_res = res
self.em = self.unscale_data(res.x)
return self.em
def update_abmodel(self, x, xerr=None, update_params=False):
"""
Load the supplied data into self.abmodel, and perform fitting.
If the errors/uncertainties is not specified, it is assumed
to have the same relative errors as the observed SBP.
"""
if xerr is None:
x_err = x * self.s_err / self.s
self.abmodel.load_data(xdata=self.r, xerr=self.r_err,
ydata=x, yerr=x_err,
update_params=update_params)
self.abmodel.fit()
def scale_data(self, x, xerr=None, update_params=False):
"""
Scale the data (i.e., 3D EM profile) by dividing the fitted
AB model.
If the errors/uncertainties is not specified, it is assumed
to have the same relative errors as the observed SBP.
"""
self.update_abmodel(x=x, xerr=xerr, update_params=update_params)
x_fitted = self.abmodel.f(self.r)
x_scaled = x / x_fitted
return x_scaled
def unscale_data(self, x):
"""
Undo the data scaling by multiplying the same fitted model
previously used to scale the data.
"""
x_fitted = self.abmodel.f(self.r)
x_unscaled = x * x_fitted
return x_unscaled
def f_objective(self, x, scaled=False):
"""
The objective function to be minimized, in order to derive the
best solution (i.e., deprojected SBP) for the observed SBP.
This objective function is a combination of plain chi-squared
and a regularization constraint.
'lbd' is the parameter to balance the goodness-of-fit and the
regularization constraint.
References: ref.[1], eq.(2)
"""
return (self.f_chisq(x, scaled=scaled) +
self.lbd * self.f_constraint(x, scaled=scaled))
def f_residual(self, x, scaled=False):
"""
Calculate the residuals of each data point for the solution.
The current solution (i.e., 3D EM profile) is first projected
into the 2D SBP, then compared to the observed SBP.
"""
if scaled:
x = self.unscale_data(x)
x_2d = self.projector.project(x)
residuals = (x_2d - self.s) / self.s_err
return residuals
def f_chisq(self, x, scaled=False):
"""
Function to calculate the chi-squared value of the current
solution with respect to the data.
"""
chisq = np.sum(self.f_residual(x, scaled=scaled) ** 2)
return chisq
def f_constraint(self, x, scaled=False):
"""
Function to calculate the value of regularization constraint.
References:
[1] ref.[1], eq.(3)
[2] ref.[3], eq.(18)
"""
if not scaled:
x = self.scale_data(x)
# constraint = np.sum((x[:-1] + x[1:]) ** 2)
constraint = np.sum((x[:-2] - 2*x[1:-1] + x[2:]) ** 2)
return constraint
def optimize_lbd(self, lbd0=None):
"""
Find the optimal smoothing parameter 'lbd' by using the
cross-validation method.
References: ref.[3], eq.(23)
"""
if lbd0 is not None:
self.lbd = lbd0
pass
def predict_obs(self):
"""
Predict the observation data (i.e., surface brightness) by
projecting the interpolated solved EM profile.
"""
pass
class SBP:
"""
X-ray surface brightness profile class.
This class deals with SBP background subtraction and SBP extrapolation.
"""
# input SBP data: [r, r_err, s, s_err]
r = None
r_err = None
s = None
s_err = None
# uniform background been subtracted
bkg = None
# cut/minimal radius from which the SBP is fitted to the PLCModel
rcut = None
# PLCModel instance used to extrapolate the SBP
plcmodel = None
def __init__(self, r, r_err=None, s=None, s_err=None, rcut=None):
self.load_data(r=r, r_err=r_err, s=s, s_err=s_err, rcut=rcut)
self.plcmodel = PLCModel(scale=True)
def load_data(self, r, r_err=None, s=None, s_err=None, rcut=None):
if r.ndim == 2 and r.shape[1] == 4:
# 4-column data
self.r = r[:, 0].copy()
self.r_err = r[:, 1].copy()
self.s = r[:, 2].copy()
self.s_err = r[:, 3].copy()
else:
self.r = np.array(r)
self.r_err = np.array(r_err)
self.s = np.array(s)
self.s_err = np.array(s_err)
self.rcut = rcut
def subtract_bkg(self, bkg):
"""
Subtract the uniform background from the brightness.
The value of background can be acquired by fitting the whole
or core-exclude SBP with model consisting of a plain beta model
and a constant.
The "AB model" maybe also applicable.
"""
self.bkg = bkg
self.s -= bkg
self.bkg_subtracted = True
def extrapolate(self, rcut=None):
"""
Extrapolate the SBP by assuming that the outer SBP follows the
following relation:
S_X = A * r^{-alpha},
which can be determined by model fitting.
The SBP is extrapolated to the region where the brightness is
lower than the current observed minimal brightness by one order
of magnitude, and the extrapolated SBP bins have the same width
and relative errors as the last SBP bin observed.
Note that the uniform background should be subtracted first.
Return:
* self.r_extrapolated
* self.r_err_extrapolated
* self.s_extrapolated
* self.s_err_extrapolated
* self.mask_extrapolated
"""
if rcut is not None:
self.rcut = rcut
self.mask = self.r >= self.rcut
self.plcmodel.load_data(xdata=self.r[self.mask],
ydata=self.s[self.mask],
xerr=self.r_err[self.mask],
yerr=self.s_err[self.mask],
update_params=True)
self.plcmodel.set_param("bkg", value=0.0, vary=False)
self.plcmodel.fit()
last_r_err = self.r_err[-1]
last_s = self.s[-1]
last_s_err = self.s_err[-1]
#
r_exp = self.r.tolist()
r_err_exp = self.r_err.tolist()
s_exp = self.s.tolist()
s_err_exp = self.s_err.tolist()
mask_exp = [False] * len(r_exp)
# do extrapolation
r_tmp = r_exp[-1] + 2*r_err_exp[-1]
s_tmp = self.plcmodel.f(r_tmp)
while s_tmp > last_s / 10.0:
r_exp.append(r_tmp)
r_err_exp.append(last_r_err)
s_exp.append(s_tmp)
s_err_exp.append(s_tmp * last_s_err / last_s)
mask_exp.append(True)
r_tmp = r_exp[-1] + 2*r_err_exp[-1]
s_tmp = self.plcmodel.f(r_tmp)
# convert to numpy array
self.r_extrapolated = np.array(r_exp)
self.r_err_extrapolated = np.array(r_err_exp)
self.s_extrapolated = np.array(s_exp)
self.s_err_extrapolated = np.array(s_err_exp)
self.mask_extrapolated = np.array(mask_exp)
def report(self, outfile=None):
"""
Report the extrapolation model fitting results.
"""
results = OrderedDict([
("bkg", self.bkg),
("bkg_subtracted", self.bkg_subtracted),
("rcut", self.rcut),
("model", self.plcmodel.name),
("params", OrderedDict([
(pn, [par.value, par.min, par.max, par.vary])
for pn, par in self.plcmodel.params.items()
])),
])
results_json = json.dumps(results, indent=2)
if outfile is None:
print(results_json)
else:
open(outfile, "w").write(results_json+"\n")
def plot(self, ax=None, fig=None):
"""
Make a plot of the SBP extrapolation.
"""
if ax is None:
fig, ax = plt.subplots(1, 1)
# ignored data points
mask_ignore = np.logical_not(self.mask)
if np.sum(mask_ignore) > 0:
ax.errorbar(self.r[mask_ignore], self.s[mask_ignore],
xerr=self.r_err[mask_ignore],
yerr=self.s_err[mask_ignore],
fmt="none", elinewidth=1, capthick=1)
# data points used to fit the PLC model
ax.errorbar(self.r[self.mask], self.s[self.mask],
xerr=self.r_err[self.mask],
yerr=self.s_err[self.mask],
fmt="none", elinewidth=2, capthick=2)
# extrapolated data points
ax.errorbar(self.r_extrapolated[self.mask_extrapolated],
self.s_extrapolated[self.mask_extrapolated],
xerr=self.r_err_extrapolated[self.mask_extrapolated],
yerr=self.s_err_extrapolated[self.mask_extrapolated],
fmt="none", elinewidth=1, capthick=1)
# original data points without background subtraction
eb = ax.errorbar(self.r, self.s+self.bkg,
xerr=self.r_err, yerr=self.s_err,
fmt="none", elinewidth=1, capthick=1)
eb[-1][0].set_linestyle("dashdot")
eb[-1][1].set_linestyle("dashdot")
# PLC model
mask_fit = self.mask_extrapolated.copy()
mask_fit[:len(self.mask)] = self.mask
r_fit = self.r_extrapolated[mask_fit]
s_fit = self.plcmodel.f(r_fit)
ax.plot(r_fit, s_fit, color="black", linestyle="solid")
# adjust layout
r_min = 1.0
r_max = self.r_extrapolated[-1] + self.r_err_extrapolated[-1]
s_min = min(self.s_extrapolated) / 2.0
s_max = max(self.s_extrapolated + self.s_err_extrapolated)
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlim(r_min, r_max)
ax.set_ylim(s_min, s_max)
# labels
ax.set_xlabel("Radius (%s)" % "pixel")
ax.set_ylabel(r"Surface Brightness (photons/cm$^2$/pixel$^2$/s)")
ax.text(x=r_max/1.2, y=s_max/1.2,
s=r"reduced $\chi^2$: %.2f / %.2f = %.2f" % (
self.plcmodel.fitted.chisqr, self.plcmodel.fitted.nfree,
self.plcmodel.fitted.chisqr/self.plcmodel.fitted.nfree),
horizontalalignment="right", verticalalignment="top")
fig.tight_layout()
return (fig, ax)
def save(self, outfile):
"""
Save the (extrapolated) SBP to the given output file in CSV format.
"""
df = pd.DataFrame()
df["radius"] = self.r_extrapolated
df["radius_err"] = self.r_err_extrapolated
df["brightness"] = self.s_extrapolated
df["brightness_err"] = self.s_err_extrapolated
df["flag_extrapolation"] = self.mask_extrapolated
flag_fit = np.zeros(self.mask_extrapolated, dtype=bool)
flag_fit[:len(self.mask)] = self.mask
df["flag_fit"] = flag_fit
df.to_csv(outfile, header=True, index=False)
def main():
parser = argparse.ArgumentParser(
description="Deproject the surface brightness profile (SBP)")
parser.add_argument("--sbpfit", dest="sbpfit", required=True,
default="sbpfit.conf",
help="sbpfit configuration file")
parser.add_argument("--sbpexp-rcut-ratio", dest="sbpexp_rcut_ratio",
type=float, default=1.2,
help="cut radius from which the SBP is fitted " +
"the powerlaw to extrapolate, specified by the " +
"ratio w.r.t sbpfit rc (default: 1.2 * rc)")
parser.add_argument("--sbpexp-outfile", dest="sbpexp_outfile",
default="sbpexp.txt",
help="output to save the extrapolated SBP data")
parser.add_argument("--sbpexp-json", dest="sbpexp_json",
default="sbpexp.json",
help="SBP extrapolation model information")
parser.add_argument("--sbpexp-png", dest="sbpexp_png",
default="sbpexp.png",
help="save an image of the SBP extrapolation")
parser.add_argument("--emprofile", dest="emprofile",
default="emprofile.txt",
help="deprojected emission measure (EM) profile")
parser.add_argument("--emprofile-png", dest="emprofile_png",
default="emprofile.png",
help="save an image of the deprojected EM profile")
args = parser.parse_args()
sbpfit_conf = ConfigObj(args.sbpfit)
try:
sbpfit_outfile = sbpfit_conf[sbpfit_conf["model"]]["outfile"]
except KeyError:
sbpfit_outfile = sbpfit_conf["outfile"]
sbpfit_results = json.load(sbpfit_outfile)
sbpdata = np.loadtxt(sbpfit_conf["sbpfile"])
rc = sbpfit_results["params"]["rc"][0]
bkg = sbpfit_results["params"]["bkg"][0]
print("SBP background subtraction and extrapolation ...")
sbp = SBP(sbpdata)
sbp.subtract_bkg(bkg=bkg)
sbp.extrapolate(rcut=rc*args.sbpexp_rcut_ratio)
sbp.save(outfile=args.sbpexp_outfile)
sbp.report(outfile=args.sbpexp_json)
fig = Figure(figsize=(10, 8))
FigureCanvas(fig)
ax = fig.add_subplot(1, 1, 1)
sbp.plot(ax=ax, fig=fig)
fig.savefig(args.sbpexp_png, dpi=150)
print("SBP deprojection -> emission measure profile ...")
if __name__ == "__main__":
main()
|