1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
#!/usr/bin/env python3
#
# Aaron LI
# Created: 2016-07-04
# Updated: 2016-07-11
#
# Change logs:
# 2016-07-11:
# * Use a default config to allow a minimal user config
# 2016-07-04:
# * Set default "rcut=3000" for TemperatureProfile.extrapolate()
#
"""
Fit the deprojected ICM temperature data points with a self-proposed
temperature profile model, i.e., the *wang2012* model:
T(r) = A * (pow(x,n)+xi*a2) / (pow(x,n)+a2) / pow(1+x*x/a3/a3, beta) + T0
With the fitted temperature profile model, we can interpolate and
extrapolate the temperature profile for later mass profile calculation.
"""
import argparse
import json
from collections import OrderedDict
import numpy as np
import astropy.units as au
import lmfit
from configobj import ConfigObj
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from fitting_models import FittingModel
from astro_params import ChandraPixel
plt.style.use("ggplot")
config_default = """
## Configuration for `fit_tprofile.py`
# redshift of the object (for pixel to distance conversion)
redshift = -1
# input temperature profile data file
t_profile_data = t_profile_data.txt
# cut radius to which stop the extrapolation (unit: kpc)
rcut_extrap = 3000
# number of data points for the output temperature profile
num_dp = 1000
# output json file to save the fitting results
t_profile_json = t_profile.json
# output interpolated and extrapolated temperature profile
t_profile = t_profile.txt
t_profile_image = t_profile.png
[model_params]
# name = initial, lower, upper, variable (FIXED/False to fix the parameter)
A = 5.0, 1.0, 500
n = 5.0, 0.1, 10
xi = 0.3, 0.1, 1.0
a2 = 2000, 1.0, 1e+05
a3 = 1000, 100, 3000
#beta = 0.5, 0.1, 1.0, FIXED
beta = 0.5, 0.1, 1.0
T0 = 2.0, 1.0, 5.0
"""
class Wang2012Model(FittingModel):
"""
*wang2012* model proposed to fit the ICM temperature profile.
"""
name = "Wang2012 Temperature Profile Model"
# model parameters
params = lmfit.Parameters()
params.add_many( # (name, value, vary, min, max, expr)
("A", 5.0, True, 1.0, 500, None),
("n", 5.0, True, 0.1, 10, None),
("xi", 0.3, True, 0.1, 1.0, None),
("a2", 2000, True, 1.0, 1.0e5, None),
("a3", 1000, True, 100, 3000, None),
("beta", 0.5, True, 0.1, 1.0, None),
("T0", 2.0, True, 1.0, 5.0, None))
def __init__(self, fit_method="lbfgsb", params=None):
super().__init__(fit_method=fit_method, params=params, scale=False)
@staticmethod
def model(x, params):
parvals = params.valuesdict()
A = parvals["A"]
n = parvals["n"]
xi = parvals["xi"]
a2 = parvals["a2"]
a3 = parvals["a3"]
beta = parvals["beta"]
T0 = parvals["T0"]
return (A * (x**n + xi*a2) / (x**n + a2) /
((1 + (x/a3)**2) ** beta) + T0)
class TemperatureProfile:
"""
Fit the deprojected ICM temperature data points with a temperature
profile model, and output the interpolated and extrapolated temperature
profile for later mass profile calculation.
The input radii have unit "pixel", which are first converted to
"kpc" and then fitted with the model.
The output temperature profile also has unit "kpc" for radii.
"""
# input temperature profile data: [r, r_err, t, t_err]
r = None
r_err = None
t = None
t_err = None
# redshift of the source
z = None
# `ChandraPixel` instance for unit conversion
pixel = None
# flag to indicate whether the units are converted
units_converted = False
# model to be fitted
model = None
def __init__(self, data, z):
self.load_data(data)
self.z = z
self.pixel = ChandraPixel(z)
self.model = Wang2012Model()
def load_data(self, data):
# 4-column t profile: [r, r_err, temperature, temperature_err]
self.r = data[:, 0].copy()
self.r_err = data[:, 1].copy()
self.t = data[:, 2].copy()
self.t_err = data[:, 3].copy()
def convert_units(self):
"""
Convert the units of input data:
radius: pixel -> kpc
"""
if not self.units_converted:
kpc_per_pixel = self.pixel.get_length().to(au.kpc).value
self.r *= kpc_per_pixel
self.r_err *= kpc_per_pixel
self.units_converted = True
def fit(self):
self.model.load_data(xdata=self.r, ydata=self.t,
xerr=self.r_err, yerr=self.t_err)
self.model.fit()
def extrapolate(self, rcut=3000, num=1000):
"""
Interpolate and extrapolate the fitted temperature profile.
The output radii are generated to be linear-evenly distributed.
"""
self.rcut_extrap = rcut
self.num_dp = num
radius = np.linspace(0.0, rcut, num+1)
rin = radius[:-1]
rout = radius[1:]
self.r_extrapolated = (rout + rin) / 2.0
self.r_err_extrapolated = (rout - rin) / 2.0
self.t_extrapolated = self.model.f(self.r_extrapolated)
def report(self, outfile=None):
"""
Report the temperature profile model fitting results.
"""
results = OrderedDict([
("redshift", self.z),
("rcut_extrap", self.rcut_extrap),
("num_dp", self.num_dp),
("model", self.model.name),
("fitting", self.model.report(rtype="fitting")),
("params", self.model.report(rtype="parameters")),
])
results_json = json.dumps(results, indent=2)
if outfile is None:
print(results_json)
else:
open(outfile, "w").write(results_json+"\n")
def save(self, outfile):
data = np.column_stack([self.r_extrapolated,
self.r_err_extrapolated,
self.t_extrapolated])
header = "radius[kpc] radius_err[kpc] temperature[keV]"
np.savetxt(outfile, data, header=header)
def plot(self, ax=None, fig=None):
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.errorbar(self.r, self.t,
xerr=self.r_err, yerr=self.t_err,
fmt="none", elinewidth=2, capthick=2)
# fitted model
ax.plot(self.r_extrapolated, self.t_extrapolated,
color="black", linestyle="solid", linewidth=2)
ax.set_xlabel("Radius (kpc)")
ax.set_ylabel("Temperature (keV)")
fig.tight_layout()
return (fig, ax)
def main():
parser = argparse.ArgumentParser(
description="temperature profile fit, interpolate and extrapolate")
parser.add_argument("config", nargs="?", default="tprofile.conf",
help="configuration (default: tprofile.conf")
args = parser.parse_args()
config = ConfigObj(config_default.splitlines())
config_user = ConfigObj(args.config)
config.merge(config_user)
tprofile_data = np.loadtxt(config["t_profile_data"])
redshift = config.as_float("redshift")
tprofile = TemperatureProfile(tprofile_data, redshift)
tprofile.convert_units()
# Load parameters settings from config
params = config["model_params"]
for p, value in params.items():
variable = True
if len(value) == 4 and value[3].upper() in ["FIXED", "FALSE"]:
variable = False
tprofile.model.set_param(name=p, value=float(value[0]),
min=float(value[1]), max=float(value[2]),
vary=variable)
tprofile.fit()
tprofile.extrapolate(rcut=config.as_float("rcut_extrap"),
num=config.as_int("num_dp"))
tprofile.report(outfile=config["t_profile_json"])
tprofile.save(outfile=config["t_profile"])
fig = Figure(figsize=(10, 8))
FigureCanvas(fig)
ax = fig.add_subplot(1, 1, 1)
tprofile.plot(ax=ax, fig=fig)
fig.savefig(config["t_profile_image"], dpi=150)
if __name__ == "__main__":
main()
|