diff options
author | Aaron LI <aaronly.me@gmail.com> | 2016-05-27 22:47:24 +0800 |
---|---|---|
committer | Aaron LI <aaronly.me@gmail.com> | 2016-05-27 22:47:24 +0800 |
commit | ffd178e0bd72562a3c2cff9747b6e656edc881dc (patch) | |
tree | 8800b7b5b2e8bc3df1a6760df5cd54eaaa686702 /mass_profile/fit_mt_pl.cpp | |
parent | 5c35fad9240fb42c1371c721e0b2af7379bd9ea0 (diff) | |
download | chandra-acis-analysis-ffd178e0bd72562a3c2cff9747b6e656edc881dc.tar.bz2 |
Add mass_profile tools
* These tools are mainly use to calculate the total gravitational mass
profile, as well as the intermediate products (e.g., surface
brightness profile fitting, gas density profile, NFW fitting, etc.)
* There are additional tools for calculating the luminosity and flux.
* These tools mainly developed by Junhua GU, and contributed by
Weitian (Aaron) LI, and Zhenghao ZHU.
Diffstat (limited to 'mass_profile/fit_mt_pl.cpp')
-rw-r--r-- | mass_profile/fit_mt_pl.cpp | 265 |
1 files changed, 265 insertions, 0 deletions
diff --git a/mass_profile/fit_mt_pl.cpp b/mass_profile/fit_mt_pl.cpp new file mode 100644 index 0000000..a2246a7 --- /dev/null +++ b/mass_profile/fit_mt_pl.cpp @@ -0,0 +1,265 @@ +/* + Perform a double-beta density model fitting to the surface brightness data + Author: Junhua Gu + Last modified: 2011.01.01 + This code is distributed with no warrant +*/ + +//#define HAVE_X_ERROR +#include <iomanip> +#include <iostream> +#include <sstream> +#include <fstream> +#include <models/pl1d.hpp> +#include <models/lin1d.hpp> +#include "statistics/chisq.hpp" +#include "statistics/leastsq.hpp" +#include "statistics/robust_chisq.hpp" +#include <data_sets/default_data_set.hpp> +#include <methods/powell/powell_method.hpp> +#include <core/freeze_param.hpp> + +using namespace std; +using namespace opt_utilities; +//double s=5.63136645E20; +const double kpc=3.086E21;//kpc in cm +const double Mpc=kpc*1000; +const double pi=4*atan(1); +double std_norm_rand() +{ + double u=0; + double v=0; + while(u<=0||v<=0) + { + u=rand()/(double)RAND_MAX; + rand(); + v=rand()/(double)RAND_MAX; + } + double x=std::sqrt(-log(u))*cos(2*pi*v); + return x; +} + +double shuffle_data(double xc,double xl,double xu) +{ + if(std_norm_rand()>0) + { + double result=xc-std::abs(std_norm_rand()*xl); + return result; + } + else + { + double result= xc+std::abs(std_norm_rand()*xu); + return result; + } +} + +int main(int argc,char* argv[]) +{ + if(argc!=3) + { + cerr<<"Usage:"<<argv[0]<<" <a 6 column file with T -Terr +Terr M -Merr +Merr> <lower T limit>"<<endl; + return -1; + } + double T_lower_limit(atof(argv[2])); + ifstream ifs_data(argv[1]); + default_data_set<double,double> ds; + ofstream ofs_result("m-t_result.qdp"); + ofs_result<<"read terr 1 2"<<endl; + ofs_result<<"skip single"<<endl; + ofs_result<<"log"<<endl; + //ofs_result<<"li on 2"<<endl; + ofs_result<<"time off"<<endl; + ofs_result<<"la f"<<endl; + ofs_result<<"la x temperature (keV)"<<endl; + ofs_result<<"la y mass (M\\dsun\\u)"<<endl; + double sxx=0; + double s1=0; + double sx=0; + double sy=0; + double sxy=0; + bool is_first_nonono=true; + + for(;;) + { + double T,Tl,Tu; + double M,Ml,Mu; + std::string line; + getline(ifs_data,line); + //ifs_data>>T>>Tl>>Tu>>M>>Ml>>Mu; + if(!ifs_data.good()) + { + break; + } + line+=" "; + istringstream iss(line); + + if(line[0]=='#') + { + if(!is_first_nonono) + { + ofs_result<<"no no no"<<endl; + } + else + { + is_first_nonono=false; + } + continue; + } + iss>>T>>Tl>>Tu>>M>>Ml>>Mu; + //std::cerr<<L<<"\t"<<Lerr<<endl; + if(!iss.good()) + { + continue; + } + + if(T<T_lower_limit||M<0) + { + continue; + } + if(std::abs(Mu)<M*.1||std::abs(Ml)<M*.1) + { + cerr<<"mass error less than 10%, skipped"<<endl; + cerr<<line<<endl; + continue; + } +#if 1 + if(std::abs(Tu)<.1||std::abs(Tl)<.1) + { + cerr<<"T error less than 10%, skipped"<<endl; + cerr<<line<<endl; + continue; + } +#endif + if(std::abs(Mu)+std::abs(Ml)<M*.1) + { + double k=M*.1/(std::abs(Mu)+std::abs(Ml)); + Mu*=k; + Ml*=k; + } + Tl=std::abs(Tl); + Tu=std::abs(Tu); + Ml=std::abs(Ml); + Mu=std::abs(Mu); + ofs_result<<T<<"\t"<<-std::abs(Tl)<<"\t"<<+std::abs(Tu)<<"\t"<<M<<"\t"<<-std::abs(Ml)<<"\t"<<+std::abs(Mu)<<endl; + double x=log(T); + double y=log(M); + double xu=log(T+Tu)-log(T); + double xl=log(T-Tl)-log(T); + + double yu=log(M+Mu)-log(M); + double yl=log(M-Ml)-log(M); + if(isnan(x)||isnan(y)||isnan(yl)||isnan(yu)|| + isnan(xl)||isnan(xu)) + { + std::cerr<<"one data with error > data, skipped"<<endl; + std::cerr<<line<<endl; + continue; + } + sxx+=x*x; + sx+=x; + sy+=y; + sxy+=y*x; + s1+=1; + data<double,double> d(x,y,std::abs(yl),std::abs(yu), + std::abs(xl),std::abs(xu)); + ds.add_data(d); + } + + double M=sxx*s1-sx*sx; + double Ma=sxy*s1-sy*sx; + double Mb=sxx*sy-sx*sxy; + double k0=Ma/M; + double b0=Mb/M; + + ofs_result<<"no no no"<<endl; + fitter<double,double,vector<double>,double,std::string> fit; + fit.set_opt_method(powell_method<double,vector<double> >()); + fit.set_statistic(chisq<double,double,vector<double>,double,std::string>()); + //fit.set_statistic(robust_chisq<double,double,vector<double>,double,std::string>()); + //fit.set_statistic(leastsq<double,double,vector<double>,double,std::string>()); + fit.set_model(lin1d<double>()); + fit.load_data(ds); + + cerr<<"k0="<<k0<<endl; + cerr<<"b0="<<b0<<endl; + cerr<<"Ampl0="<<exp(b0)<<endl; + cerr<<"gamma0="<<k0<<endl; + fit.set_param_value("k",k0); + fit.set_param_value("b",b0); + std::vector<double> p=fit.get_all_params(); + std::cout<<"chi="<<fit.get_statistic().eval(p)<<std::endl; + fit.fit(); + fit.fit(); + p=fit.fit(); + + std::cout<<"chi="<<fit.get_statistic().eval(p)<<std::endl; + for(double i=.5;i<12;i*=1.01) + { + ofs_result<<i<<"\t0\t0\t"<<exp(fit.eval_model_raw(log(i),p))<<"\t0\t0\n"; + } + + ofstream ofs_resid("resid.qdp"); + ofs_resid<<"read terr 1 2 3"<<endl; + ofs_resid<<"skip single"<<endl; + ofs_resid<<"ma 3 on 1"<<endl; + ofs_resid<<"log x"<<endl; + for(int i=0;i<ds.size();++i) + { + double x=ds.get_data(i).get_x(); + double y=ds.get_data(i).get_y(); + double xe1=-ds.get_data(i).get_x_lower_err()*0; + double xe2=ds.get_data(i).get_x_upper_err()*0; + double ye1=-ds.get_data(i).get_y_lower_err(); + double ye2=ds.get_data(i).get_y_upper_err(); + ofs_resid<<exp(x)<<"\t"<<0<<"\t"<<0<<"\t"<<y-fit.eval_model_raw(x,p)<<"\t"<<ye1<<"\t"<<ye2<<"\t"<<"0\t0\t0"<<endl; + } + double mean_A=0; + double mean_A2=0; + double mean_g=0; + double mean_g2=0; + int cnt=0; + for(int n=0;n<100;++n) + { + ++cnt; + cerr<<"."; + opt_utilities::default_data_set<double,double> ds1; + for(int i=0;i<ds.size();++i) + { + double new_x=shuffle_data(ds.get_data(i).get_x(), + ds.get_data(i).get_x_lower_err(), + ds.get_data(i).get_x_upper_err()); + double new_y=shuffle_data(ds.get_data(i).get_y(), + ds.get_data(i).get_y_lower_err(), + ds.get_data(i).get_y_upper_err()); + ds1.add_data(data<double,double>(new_x,new_y, + ds.get_data(i).get_y_lower_err(), + ds.get_data(i).get_y_upper_err(), + ds.get_data(i).get_y_lower_err(), + ds.get_data(i).get_y_upper_err())); + } + fit.load_data(ds1); + + fit.fit(); + double k=fit.get_param_value("k"); + double b=fit.get_param_value("b"); + double A=exp(b); + double g=k; + mean_A+=A; + mean_A2+=A*A; + mean_g+=g; + mean_g2+=g*g; + } + std::cerr<<endl; + mean_A/=cnt; + mean_A2/=cnt; + mean_g/=cnt; + mean_g2/=cnt; + double std_A=std::sqrt(mean_A2-mean_A*mean_A); + double std_g=std::sqrt(mean_g2-mean_g*mean_g); + + std::cerr<<"M=M0*T^gamma"<<endl; + std::cout<<"M0= "<<exp(p[1])<<"+/-"<<std_A<<endl; + std::cout<<"gamma= "<<p[0]<<"+/-"<<std_g<<endl; + std::cout<<"Num of sources:"<<ds.size()<<endl; + +} |