diff options
Diffstat (limited to 'mass_profile/calc_lx_beta.cpp')
-rw-r--r-- | mass_profile/calc_lx_beta.cpp | 506 |
1 files changed, 506 insertions, 0 deletions
diff --git a/mass_profile/calc_lx_beta.cpp b/mass_profile/calc_lx_beta.cpp new file mode 100644 index 0000000..5bb2570 --- /dev/null +++ b/mass_profile/calc_lx_beta.cpp @@ -0,0 +1,506 @@ +/* + Perform a double-beta density model fitting to the surface brightness data + Author: Junhua Gu + Last modified: 2011.01.01 + This code is distributed with no warrant +*/ + +#include <unistd.h> +#include <iostream> +#include <fstream> +#include <list> +#include <algorithm> +using namespace std; +#include "beta_cfg.hpp" +#include "dump_fit_qdp.hpp" +#include "report_error.hpp" +#include "vchisq.hpp" +#include "chisq.hpp" +#include "beta.hpp" +#include "models/beta1d.hpp" +#include <data_sets/default_data_set.hpp> +#include <methods/powell/powell_method.hpp> +#include <core/freeze_param.hpp> +#include <error_estimator/error_estimator.hpp> +#include "spline.h" +using namespace opt_utilities; +//double s=5.63136645E20; +const double kpc=3.086E21;//kpc in cm +const double Mpc=kpc*1000; +double beta_func(double r, + double n0,double rc,double beta) +{ + + return abs(n0)*pow(1+r*r/rc/rc,-3./2.*abs(beta)); +} + + + //calculate critical density from z, under following cosmological constants +static double calc_critical_density(double z, + const double H0=2.3E-18, + const double Omega_m=.27) +{ + const double G=6.673E-8;//cm^3 g^-1 s^2 + const double E=std::sqrt(Omega_m*(1+z)*(1+z)*(1+z)+1-Omega_m); + const double H=H0*E; + return 3*H*H/8/pi/G; +} + + +//A class enclosing the spline interpolation method of cooling function +//check spline.h for more detailed information +//this class is a thin wrapper for the spline class defined in spline.h +class spline_func_obj + :public func_obj<double,double> +{ + //has an spline object + spline<double> spl; +public: + //This function is used to calculate the intepolated value + double do_eval(const double& x) + { + return spl.get_value(x); + } + + //we need this function, when this object is performing a clone of itself + spline_func_obj* do_clone()const + { + return new spline_func_obj(*this); + } + +public: + //add points to the spline object, after which the spline will be initialized + void add_point(double x,double y) + { + spl.push_point(x,y); + } + + //before getting the intepolated value, the spline should be initialzied by calling this function + void gen_spline() + { + spl.gen_spline(0,0); + } +}; + +int main(int argc,char* argv[]) +{ + if(argc<4) + { + cerr<<argv[0]<<" <configure file> <rout in kpc> <bolo erg cfunc file>"<<endl; + return -1; + } + //initialize the parameters list + ifstream cfg_file(argv[1]); + assert(cfg_file.is_open()); + cfg_map cfg=parse_cfg_file(cfg_file); + + //check the existence of following parameters + + const double z=cfg.z; + + //initialize the radius list, sbp list and sbp error list + std::vector<double> radii; + std::vector<double> sbps; + std::vector<double> sbpe; + std::vector<double> radii_all; + std::vector<double> sbps_all; + std::vector<double> sbpe_all; + //read sbp and sbp error data + for(ifstream ifs(cfg.sbp_file.c_str());;) + { + assert(ifs.is_open()); + double x,xe; + ifs>>x>>xe; + if(!ifs.good()) + { + break; + } + if(x/xe<2) + { + break; + } + cerr<<x<<"\t"<<xe<<endl; + sbps.push_back(x); + sbpe.push_back(xe); + sbps_all.push_back(x); + sbpe_all.push_back(xe); + } + + //read radius data + for(ifstream ifs(cfg.radius_file.c_str());;) + { + assert(ifs.is_open()); + double x; + ifs>>x; + if(!ifs.good()) + { + break; + } + cerr<<x<<endl; + radii.push_back(x); + radii_all.push_back(x); + } + //initialize the cm/pixel value + double cm_per_pixel=cfg.cm_per_pixel; + double rmin=5*kpc/cm_per_pixel; + if(cfg.rmin_pixel>0) + { + rmin=cfg.rmin_pixel; + } + else + { + rmin=cfg.rmin_kpc*kpc/cm_per_pixel; + } + + cerr<<"rmin="<<rmin<<endl; + std::list<double> radii_tmp,sbps_tmp,sbpe_tmp; + radii_tmp.resize(radii.size()); + sbps_tmp.resize(sbps.size()); + sbpe_tmp.resize(sbpe.size()); + copy(radii.begin(),radii.end(),radii_tmp.begin()); + copy(sbps.begin(),sbps.end(),sbps_tmp.begin()); + copy(sbpe.begin(),sbpe.end(),sbpe_tmp.begin()); + for(list<double>::iterator i=radii_tmp.begin();i!=radii_tmp.end();) + { + if(*i<rmin) + { + radii_tmp.pop_front(); + sbps_tmp.pop_front(); + sbpe_tmp.pop_front(); + i=radii_tmp.begin(); + continue; + } + ++i; + } + radii.resize(radii_tmp.size()); + sbps.resize(sbps_tmp.size()); + sbpe.resize(sbpe_tmp.size()); + copy(radii_tmp.begin(),radii_tmp.end(),radii.begin()); + copy(sbps_tmp.begin(),sbps_tmp.end(),sbps.begin()); + copy(sbpe_tmp.begin(),sbpe_tmp.end(),sbpe.begin()); + + //read cooling function data + spline_func_obj cf; + for(ifstream ifs(cfg.cfunc_file.c_str());;) + { + assert(ifs.is_open()); + double x,y,y1,y2; + ifs>>x>>y; + if(!ifs.good()) + { + break; + } + cerr<<x<<"\t"<<y<<endl; + if(x>radii.back()) + { + break; + } + //cf.add_point(x,y*2.1249719395939022e-68);//change with source + cf.add_point(x,y);//change with source + } + cf.gen_spline(); + + //read temperature profile data + spline_func_obj Tprof; + int tcnt=0; + for(ifstream ifs1(cfg.T_file.c_str());;++tcnt) + { + assert(ifs1.is_open()); + double x,y; + ifs1>>x>>y; + if(!ifs1.good()) + { + break; + } + cerr<<x<<"\t"<<y<<endl; +#if 0 + if(tcnt==0) + { + Tprof.add_point(0,y); + } +#endif + Tprof.add_point(x,y); + } + + + Tprof.gen_spline(); + + default_data_set<std::vector<double>,std::vector<double> > ds; + ds.add_data(data<std::vector<double>,std::vector<double> >(radii,sbps,sbpe,sbpe,radii,radii)); + + //initial fitter + fitter<vector<double>,vector<double>,vector<double>,double> f; + f.load_data(ds); + //initial the object, which is used to calculate projection effect + projector<double> a; + beta<double> betao; + //attach the cooling function + a.attach_cfunc(cf); + a.set_cm_per_pixel(cm_per_pixel); + a.attach_model(betao); + f.set_model(a); + //chi^2 statistic + vchisq<double> c; + c.verbose(true); + c.set_limit(); + f.set_statistic(c); + //optimization method + f.set_opt_method(powell_method<double,std::vector<double> >()); + //initialize the initial values + double n0=0; + //double beta=atof(arg_map["beta"].c_str()); + double beta=0; + double rc=0; + double bkg=0; + + for(std::map<std::string,std::vector<double> >::iterator i=cfg.param_map.begin(); + i!=cfg.param_map.end();++i) + { + std::string pname=i->first; + f.set_param_value(pname,i->second.at(0)); + if(i->second.size()==3) + { + double a1=i->second[1]; + double a2=i->second[2]; + double u=std::max(a1,a2); + double l=std::min(a1,a2); + f.set_param_upper_limit(pname,u); + f.set_param_lower_limit(pname,l); + } + else + { + if(pname=="beta") + { + f.set_param_lower_limit(pname,.3); + f.set_param_upper_limit(pname,1.4); + } + } + } + + f.fit(); + f.fit(); + std::vector<double> p=f.get_all_params(); + n0=f.get_param_value("n0"); + rc=f.get_param_value("rc"); + beta=f.get_param_value("beta"); + //output the datasets and fitting results + ofstream param_output("lx_beta_param.txt"); + for(int i=0;i<f.get_num_params();++i) + { + if(f.get_param_info(i).get_name()=="rc") + { + cerr<<"rc_kpc"<<"\t"<<abs(f.get_param_info(i).get_value())*cm_per_pixel/kpc<<endl; + param_output<<"rc_kpc"<<"\t"<<abs(f.get_param_info(i).get_value())*cm_per_pixel/kpc<<endl; + } + cerr<<f.get_param_info(i).get_name()<<"\t"<<abs(f.get_param_info(i).get_value())<<endl; + param_output<<f.get_param_info(i).get_name()<<"\t"<<abs(f.get_param_info(i).get_value())<<endl; + } + cerr<<"chi square="<<f.get_statistic_value()/(radii.size()-f.get_model().get_num_free_params())<<endl; + param_output<<"chi square="<<f.get_statistic_value()/(radii.size()-f.get_model().get_num_free_params())<<endl; + + std::vector<double> mv=f.eval_model_raw(radii_all,p); + int sbps_inner_cut_size=int(sbps_all.size()-sbps.size()); + ofstream ofs_sbp("lx_sbp_fit.qdp"); + ofs_sbp<<"read serr 2"<<endl; + ofs_sbp<<"skip single"<<endl; + ofs_sbp<<"line off "<<endl; + if(sbps_inner_cut_size>=1) + { + ofs_sbp<<"line on 2"<<endl; + ofs_sbp<<"line on 3"<<endl; + ofs_sbp<<"line on 4"<<endl; + ofs_sbp<<"line on 5"<<endl; + ofs_sbp<<"ls 2 on 2"<<endl; + ofs_sbp<<"ls 2 on 4"<<endl; + ofs_sbp<<"ls 2 on 5"<<endl; + ofs_sbp<<"line on 7"<<endl; + ofs_sbp<<"ls 2 on 7"<<endl; + + ofs_sbp<<"ma 1 on 2"<<endl; + ofs_sbp<<"color 1 on 1"<<endl; + ofs_sbp<<"color 2 on 2"<<endl; + ofs_sbp<<"color 3 on 3"<<endl; + ofs_sbp<<"color 4 on 4"<<endl; + ofs_sbp<<"color 5 on 5"<<endl; + + ofs_sbp<<"win 1"<<endl; + ofs_sbp<<"yplot 1 2 3 4 5"<<endl; + ofs_sbp<<"loc 0 0 1 1"<<endl; + ofs_sbp<<"vie .1 .4 .9 .9"<<endl; + ofs_sbp<<"la y cnt/s/pixel/cm^2"<<endl; + ofs_sbp<<"log x"<<endl; + ofs_sbp<<"log y"<<endl; + ofs_sbp<<"r x "<<(radii[1]+radii[0])/2*cm_per_pixel/kpc<<" "<<(radii[sbps.size()-2]+radii[sbps.size()-1])/2*cm_per_pixel/kpc<<endl; + ofs_sbp<<"win 2"<<endl; + ofs_sbp<<"yplot 6 7"<<endl; + ofs_sbp<<"loc 0 0 1 1"<<endl; + ofs_sbp<<"vie .1 .1 .9 .4"<<endl; + ofs_sbp<<"la x radius (kpc)"<<endl; + ofs_sbp<<"la y chi"<<endl; + ofs_sbp<<"log y off"<<endl; + ofs_sbp<<"log x"<<endl; + ofs_sbp<<"r x "<<(radii[1]+radii[0])/2*cm_per_pixel/kpc<<" "<<(radii[sbps.size()-2]+radii[sbps.size()-1])/2*cm_per_pixel/kpc<<endl; + } + else + { + ofs_sbp<<"line on 2"<<endl; + ofs_sbp<<"line on 3"<<endl; + ofs_sbp<<"line on 4"<<endl; + ofs_sbp<<"ls 2 on 3"<<endl; + ofs_sbp<<"ls 2 on 4"<<endl; + ofs_sbp<<"line on 6"<<endl; + ofs_sbp<<"ls 2 on 6"<<endl; + + ofs_sbp<<"color 1 on 1"<<endl; + ofs_sbp<<"color 3 on 2"<<endl; + ofs_sbp<<"color 4 on 3"<<endl; + ofs_sbp<<"color 5 on 4"<<endl; + //ofs_sbp<<"ma 1 on 2"<<endl; + + ofs_sbp<<"win 1"<<endl; + ofs_sbp<<"yplot 1 2 3 4"<<endl; + ofs_sbp<<"loc 0 0 1 1"<<endl; + ofs_sbp<<"vie .1 .4 .9 .9"<<endl; + ofs_sbp<<"la y cnt/s/pixel/cm^2"<<endl; + ofs_sbp<<"log x"<<endl; + ofs_sbp<<"log y"<<endl; + ofs_sbp<<"r x "<<(radii[1]+radii[0])/2*cm_per_pixel/kpc<<" "<<(radii[radii.size()-2]+radii[radii.size()-1])/2*cm_per_pixel/kpc<<endl; + ofs_sbp<<"win 2"<<endl; + ofs_sbp<<"yplot 5 6"<<endl; + ofs_sbp<<"loc 0 0 1 1"<<endl; + ofs_sbp<<"vie .1 .1 .9 .4"<<endl; + ofs_sbp<<"la x radius (kpc)"<<endl; + ofs_sbp<<"la y chi"<<endl; + ofs_sbp<<"log x"<<endl; + ofs_sbp<<"log y off"<<endl; + ofs_sbp<<"r x "<<(radii[1]+radii[0])/2*cm_per_pixel/kpc<<" "<<(radii[radii.size()-2]+radii[radii.size()-1])/2*cm_per_pixel/kpc<<endl; + + } + // cout<<sbps_all.size()<<"\t"<<sbps.size()<<"\t"<<sbps_inner_cut_size<<endl; + for(int i=1;i<sbps_all.size();++i) + { + double x=(radii_all[i]+radii_all[i-1])/2; + double y=sbps_all[i-1]; + double ye=sbpe_all[i-1]; + ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<y<<"\t"<<ye<<endl; + } + if(sbps_inner_cut_size>=1) + { + ofs_sbp<<"no no no"<<endl; + for(int i=1;i<sbps_inner_cut_size+1;++i) + { + double x=(radii_all[i]+radii_all[i-1])/2; + double ym=mv[i-1]; + ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<ym<<"\t"<<"0"<<endl; + } + } + ofs_sbp<<"no no no"<<endl; + for(int i=sbps_inner_cut_size;i<sbps_all.size();++i) + { + double x=(radii_all[i]+radii_all[i-1])/2; + double ym=mv[i-1]; + ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<ym<<"\t"<<"0"<<endl; + } + ofs_sbp<<"no no no"<<endl; + //bkg level + double bkg_level=abs(f.get_param_value("bkg")); + for(int i=0;i<sbps_all.size();++i) + { + double x=(radii_all[i]+radii_all[i-1])/2; + ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<bkg_level<<"\t0"<<endl; + } + ofs_sbp<<"no no no"<<endl; + //rc + double rc_kpc=abs(f.get_param_value("rc")*cm_per_pixel/kpc); + double max_sbp=*max_element(sbps_all.begin(),sbps_all.end()); + double min_sbp=*min_element(sbps_all.begin(),sbps_all.end()); + for(double x=min_sbp;x<=max_sbp;x+=(max_sbp-min_sbp)/100) + { + ofs_sbp<<rc_kpc<<"\t"<<x<<"\t"<<"0"<<endl; + } + //resid + ofs_sbp<<"no no no"<<endl; + for(int i=1;i<sbps.size();++i) + { + double x=(radii[i]+radii[i-1])/2; + double y=sbps[i-1]; + double ye=sbpe[i-1]; + double ym=mv[i-1]; + ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<(ym-sbps[i-1])/sbpe[i-1]<<"\t"<<1<<endl; + } + + //zero level of resid + ofs_sbp<<"no no no"<<endl; + for(int i=1;i<sbps.size();++i) + { + double x=(radii[i]+radii[i-1])/2; + double y=sbps[i-1]; + double ye=sbpe[i-1]; + double ym=mv[i-1]; + ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<0<<"\t"<<0<<endl; + } + + mv=betao.eval(radii,p); + ofstream ofs_rho("lx_rho_fit.qdp"); + ofstream ofs_rho_data("lx_rho_fit.dat"); + + ofs_rho<<"la x radius (kpc)"<<endl; + ofs_rho<<"la y density (cm\\u-3\\d)"<<endl; + /* + for(int i=1;i<sbps.size();++i) + { + double x=(radii[i]+radii[i-1])/2; + double ym=mv[i-1]; + ofs_rho<<x*cm_per_pixel/kpc<<"\t"<<ym<<endl; + } + */ + p.back()=0; + radii.clear(); + double rout=atof(argv[2])*kpc; + + for(double r=0;r<rout;r+=1*kpc)//step size=1kpc + { + double r_pix=r/cm_per_pixel; + radii.push_back(r_pix); + } + + double Da=cm_per_pixel/(.492/3600./180.*pi); + double Dl=Da*(1+z)*(1+z); + cout<<"dl="<<Dl/kpc<<endl; + + for(int n=3;n<argc;++n) + { + spline_func_obj cf_bolo_erg; + for(ifstream ifs(argv[n]);;) + { + assert(ifs.is_open()); + double x,y; + ifs>>x>>y; + if(!ifs.good()) + { + break; + } + //cerr<<x<<"\t"<<y<<endl; + + cf_bolo_erg.add_point(x,y);//change with source + } + cf_bolo_erg.gen_spline(); + + projector<double>& pj=dynamic_cast<projector<double>&>(f.get_model()); + pj.attach_cfunc(cf_bolo_erg); + + + + mv=f.eval_model_raw(radii,p); + double flux_erg=0; + for(int i=0;i<radii.size()-1;++i) + { + double S=pi*(radii[i+1]+radii[i])*(radii[i+1]-radii[i]); + flux_erg+=S*mv[i]; + } + cout<<flux_erg*4*pi*Dl*Dl<<endl; + cout<<flux_erg<<endl; + param_output<<"Lx"<<n-2<<"\t"<<flux_erg*4*pi*Dl*Dl<<endl; + param_output<<"Fx"<<n-2<<"\t"<<flux_erg<<endl; + } +} |