aboutsummaryrefslogtreecommitdiffstats
path: root/src/fit_beta_sbp.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/fit_beta_sbp.cpp')
-rw-r--r--src/fit_beta_sbp.cpp534
1 files changed, 534 insertions, 0 deletions
diff --git a/src/fit_beta_sbp.cpp b/src/fit_beta_sbp.cpp
new file mode 100644
index 0000000..295fa1e
--- /dev/null
+++ b/src/fit_beta_sbp.cpp
@@ -0,0 +1,534 @@
+/*
+ Perform a double-beta density model fitting to the surface brightness data
+ Author: Junhua Gu
+ Last modified: 2016.06.07
+ This code is distributed with no warrant
+*/
+
+#include <iostream>
+#include <fstream>
+#include <sstream>
+#include <list>
+#include <algorithm>
+#include "beta_cfg.hpp"
+#include "dump_fit_qdp.hpp"
+#include "report_error.hpp"
+#include "vchisq.hpp"
+#include "chisq.hpp"
+#include "beta.hpp"
+#include "models/beta1d.hpp"
+#include <data_sets/default_data_set.hpp>
+#include <methods/powell/powell_method.hpp>
+#include <core/freeze_param.hpp>
+#include <error_estimator/error_estimator.hpp>
+#include "spline.hpp"
+
+using namespace std;
+using namespace opt_utilities;
+//double s=5.63136645E20;
+const double kpc=3.086E21;//kpc in cm
+const double Mpc=kpc*1000;
+
+double beta_func(double r, double n0, double rc, double beta)
+{
+ return abs(n0) * pow(1+r*r/rc/rc, -3./2.*abs(beta));
+}
+
+//calculate critical density from z, under following cosmological constants
+static double calc_critical_density(double z,
+ const double H0=2.3E-18,
+ const double Omega_m=.27)
+{
+ const double G=6.673E-8;//cm^3 g^-1 s^2
+ const double E=std::sqrt(Omega_m*(1+z)*(1+z)*(1+z)+1-Omega_m);
+ const double H=H0*E;
+ return 3*H*H/8/pi/G;
+}
+
+
+//A class enclosing the spline interpolation method
+class spline_func_obj
+ :public func_obj<double,double>
+{
+ //has an spline object
+ spline<double> spl;
+public:
+ //This function is used to calculate the intepolated value
+ double do_eval(const double& x)
+ {
+ return spl.get_value(x);
+ }
+
+ //we need this function, when this object is performing a clone of itself
+ spline_func_obj* do_clone()const
+ {
+ return new spline_func_obj(*this);
+ }
+
+public:
+ //add points to the spline object, after which the spline will be initialized
+ void add_point(double x,double y)
+ {
+ spl.push_point(x,y);
+ }
+
+ //before getting the intepolated value, the spline should be initialzied by calling this function
+ void gen_spline()
+ {
+ spl.gen_spline(0,0);
+ }
+};
+
+int main(int argc,char* argv[])
+{
+ if(argc!=2)
+ {
+ cerr<<argv[0]<<" <configure file>"<<endl;
+ return -1;
+ }
+ //initialize the parameters list
+ ifstream cfg_file(argv[1]);
+ assert(cfg_file.is_open());
+ cfg_map cfg=parse_cfg_file(cfg_file);
+
+ const double z=cfg.z;
+
+ //initialize the radius list, sbp list and sbp error list
+ std::vector<double> radii;
+ std::vector<double> sbps;
+ std::vector<double> sbpe;
+ std::vector<double> radii_all;
+ std::vector<double> sbps_all;
+ std::vector<double> sbpe_all;
+ //prepend the zero point to radius list
+ radii.push_back(0.0);
+ radii_all.push_back(0.0);
+ //read sbp and sbp error data
+ cerr << "Read surface brightness profile data ..." << endl;
+ ifstream ifs(cfg.sbp_data.c_str());
+ std::string line;
+ if (ifs.is_open())
+ {
+ while(std::getline(ifs, line))
+ {
+ if (line.empty())
+ continue;
+
+ std::istringstream iss(line);
+ double x, xe, y, ye;
+ if ((iss >> x >> xe >> y >> ye))
+ {
+ std::cerr << "sbprofile data: "
+ << x << ", " << xe << ", " << y << ", " << ye
+ << std::endl;
+ radii.push_back(x+xe); /* NOTE: use outer radii of regions */
+ radii_all.push_back(x+xe);
+ sbps.push_back(y);
+ sbps_all.push_back(y);
+ sbpe.push_back(ye);
+ sbpe_all.push_back(ye);
+ }
+ else
+ {
+ std::cerr << "skipped line: " << line << std::endl;
+ }
+ }
+ }
+ else
+ {
+ std::cerr << "ERROR: cannot open file: " << cfg.sbp_data.c_str()
+ << std::endl;
+ return 1;
+ }
+
+ //initialize the cm/pixel value
+ double cm_per_pixel=cfg.cm_per_pixel;
+ double rmin;
+ if(cfg.rmin_pixel>0)
+ {
+ rmin=cfg.rmin_pixel;
+ }
+ else
+ {
+ rmin=cfg.rmin_kpc*kpc/cm_per_pixel;
+ }
+
+ cerr<<"rmin="<<rmin<<" (pixel)"<<endl;
+ std::list<double> radii_tmp,sbps_tmp,sbpe_tmp;
+ radii_tmp.resize(radii.size());
+ sbps_tmp.resize(sbps.size());
+ sbpe_tmp.resize(sbpe.size());
+ copy(radii.begin(),radii.end(),radii_tmp.begin());
+ copy(sbps.begin(),sbps.end(),sbps_tmp.begin());
+ copy(sbpe.begin(),sbpe.end(),sbpe_tmp.begin());
+ for(list<double>::iterator i=radii_tmp.begin();i!=radii_tmp.end();)
+ {
+ if(*i<rmin)
+ {
+ radii_tmp.pop_front();
+ sbps_tmp.pop_front();
+ sbpe_tmp.pop_front();
+ i=radii_tmp.begin();
+ continue;
+ }
+ ++i;
+ }
+ radii.resize(radii_tmp.size());
+ sbps.resize(sbps_tmp.size());
+ sbpe.resize(sbpe_tmp.size());
+ copy(radii_tmp.begin(),radii_tmp.end(),radii.begin());
+ copy(sbps_tmp.begin(),sbps_tmp.end(),sbps.begin());
+ copy(sbpe_tmp.begin(),sbpe_tmp.end(),sbpe.begin());
+
+ //read cooling function data
+ cerr << "Read cooling function profile data ..." << endl;
+ spline_func_obj cf;
+ for(ifstream ifs(cfg.cfunc_profile.c_str());;)
+ {
+ assert(ifs.is_open());
+ double x,y;
+ ifs>>x>>y;
+ if(!ifs.good())
+ {
+ break;
+ }
+ cerr<<x<<"\t"<<y<<endl;
+ if(x>radii.back())
+ {
+ cerr << "radius_max: " << radii.back() << endl;
+ break;
+ }
+ cf.add_point(x,y);
+ }
+ cf.gen_spline();
+
+ //read temperature profile data
+ cerr << "Read temperature profile data ..." << endl;
+ spline_func_obj Tprof;
+ int tcnt=0;
+ for(ifstream ifs1(cfg.tprofile.c_str());;++tcnt)
+ {
+ assert(ifs1.is_open());
+ double x,y;
+ ifs1>>x>>y;
+ if(!ifs1.good())
+ {
+ break;
+ }
+ cerr<<x<<"\t"<<y<<endl;
+#if 0
+ if(tcnt==0)
+ {
+ Tprof.add_point(0,y);
+ }
+#endif
+ Tprof.add_point(x,y);
+ }
+ Tprof.gen_spline();
+
+ default_data_set<std::vector<double>,std::vector<double> > ds;
+ ds.add_data(data<std::vector<double>,std::vector<double> >(radii,sbps,sbpe,sbpe,radii,radii));
+
+ //initial fitter
+ fitter<vector<double>,vector<double>,vector<double>,double> f;
+ f.load_data(ds);
+ //initial the object, which is used to calculate projection effect
+ projector<double> a;
+ beta<double> betao;
+ //attach the cooling function
+ a.attach_cfunc(cf);
+ a.set_cm_per_pixel(cm_per_pixel);
+ a.attach_model(betao);
+ f.set_model(a);
+ //chi^2 statistic
+ vchisq<double> c;
+ c.verbose(true);
+ c.set_limit();
+ f.set_statistic(c);
+ //optimization method
+ f.set_opt_method(powell_method<double,std::vector<double> >());
+ //initialize the initial values
+ double n0=0;
+ //double beta=atof(arg_map["beta"].c_str());
+ double beta=0;
+ double rc=0;
+ double bkg_level=0;
+
+ for(std::map<std::string,std::vector<double> >::iterator i=cfg.param_map.begin();
+ i!=cfg.param_map.end();++i)
+ {
+ std::string pname=i->first;
+ f.set_param_value(pname,i->second.at(0));
+ if(i->second.size()==3)
+ {
+ double a1=i->second[1];
+ double a2=i->second[2];
+ double u=std::max(a1,a2);
+ double l=std::min(a1,a2);
+ f.set_param_upper_limit(pname,u);
+ f.set_param_lower_limit(pname,l);
+ }
+ else
+ {
+ if(pname=="beta")
+ {
+ f.set_param_lower_limit(pname,.3);
+ f.set_param_upper_limit(pname,1.4);
+ }
+ }
+ }
+
+ f.fit();
+ f.fit();
+ std::vector<double> p=f.get_all_params();
+ n0=f.get_param_value("n0");
+ rc=f.get_param_value("rc");
+ beta=f.get_param_value("beta");
+ //output the datasets and fitting results
+ ofstream param_output("beta_param.txt");
+ for(size_t i=0;i<f.get_num_params();++i)
+ {
+ if(f.get_param_info(i).get_name()=="rc")
+ {
+ cerr<<"rc_kpc"<<"\t"<<abs(f.get_param_info(i).get_value())*cm_per_pixel/kpc<<endl;
+ param_output<<"rc_kpc"<<"\t"<<abs(f.get_param_info(i).get_value())*cm_per_pixel/kpc<<endl;
+ }
+ cerr<<f.get_param_info(i).get_name()<<"\t"<<abs(f.get_param_info(i).get_value())<<endl;
+ param_output<<f.get_param_info(i).get_name()<<"\t"<<abs(f.get_param_info(i).get_value())<<endl;
+ }
+ cerr<<"reduced_chi^2="<<f.get_statistic_value()/(radii.size()-f.get_model().get_num_free_params())<<endl;
+ param_output<<"reduced_chi^2="<<f.get_statistic_value()/(radii.size()-f.get_model().get_num_free_params())<<endl;
+
+ std::vector<double> mv=f.eval_model_raw(radii_all,p);
+ int sbps_inner_cut_size=int(sbps_all.size()-sbps.size());
+ ofstream ofs_sbp("sbp_fit.qdp");
+ ofs_sbp<<"read serr 2"<<endl;
+ ofs_sbp<<"skip single"<<endl;
+ ofs_sbp<<"line off "<<endl;
+ if(sbps_inner_cut_size>=1)
+ {
+ ofs_sbp<<"line on 2"<<endl;
+ ofs_sbp<<"line on 3"<<endl;
+ ofs_sbp<<"line on 4"<<endl;
+ ofs_sbp<<"line on 5"<<endl;
+ ofs_sbp<<"ls 2 on 2"<<endl;
+ ofs_sbp<<"ls 2 on 4"<<endl;
+ ofs_sbp<<"ls 2 on 5"<<endl;
+ ofs_sbp<<"line on 7"<<endl;
+ ofs_sbp<<"ls 2 on 7"<<endl;
+
+ ofs_sbp<<"ma 1 on 2"<<endl;
+ ofs_sbp<<"color 1 on 1"<<endl;
+ ofs_sbp<<"color 2 on 2"<<endl;
+ ofs_sbp<<"color 3 on 3"<<endl;
+ ofs_sbp<<"color 4 on 4"<<endl;
+ ofs_sbp<<"color 5 on 5"<<endl;
+
+ ofs_sbp<<"win 1"<<endl;
+ ofs_sbp<<"yplot 1 2 3 4 5"<<endl;
+ ofs_sbp<<"loc 0 0 1 1"<<endl;
+ ofs_sbp<<"vie .1 .4 .9 .9"<<endl;
+ ofs_sbp<<"la y cnt/s/pixel/cm^2"<<endl;
+ ofs_sbp<<"log x"<<endl;
+ ofs_sbp<<"log y"<<endl;
+ ofs_sbp<<"r x "<<(radii[1]+radii[0])/2*cm_per_pixel/kpc<<" "<<(radii[sbps.size()-2]+radii[sbps.size()-1])/2*cm_per_pixel/kpc<<endl;
+ ofs_sbp<<"win 2"<<endl;
+ ofs_sbp<<"yplot 6 7"<<endl;
+ ofs_sbp<<"loc 0 0 1 1"<<endl;
+ ofs_sbp<<"vie .1 .1 .9 .4"<<endl;
+ ofs_sbp<<"la x radius (kpc)"<<endl;
+ ofs_sbp<<"la y chi"<<endl;
+ ofs_sbp<<"log y off"<<endl;
+ ofs_sbp<<"log x"<<endl;
+ ofs_sbp<<"r x "<<(radii[1]+radii[0])/2*cm_per_pixel/kpc<<" "<<(radii[sbps.size()-2]+radii[sbps.size()-1])/2*cm_per_pixel/kpc<<endl;
+ }
+ else
+ {
+ ofs_sbp<<"line on 2"<<endl;
+ ofs_sbp<<"line on 3"<<endl;
+ ofs_sbp<<"line on 4"<<endl;
+ ofs_sbp<<"ls 2 on 3"<<endl;
+ ofs_sbp<<"ls 2 on 4"<<endl;
+ ofs_sbp<<"line on 6"<<endl;
+ ofs_sbp<<"ls 2 on 6"<<endl;
+
+ ofs_sbp<<"color 1 on 1"<<endl;
+ ofs_sbp<<"color 3 on 2"<<endl;
+ ofs_sbp<<"color 4 on 3"<<endl;
+ ofs_sbp<<"color 5 on 4"<<endl;
+ //ofs_sbp<<"ma 1 on 2"<<endl;
+
+ ofs_sbp<<"win 1"<<endl;
+ ofs_sbp<<"yplot 1 2 3 4"<<endl;
+ ofs_sbp<<"loc 0 0 1 1"<<endl;
+ ofs_sbp<<"vie .1 .4 .9 .9"<<endl;
+ ofs_sbp<<"la y cnt/s/pixel/cm^2"<<endl;
+ ofs_sbp<<"log x"<<endl;
+ ofs_sbp<<"log y"<<endl;
+ ofs_sbp<<"r x "<<(radii[1]+radii[0])/2*cm_per_pixel/kpc<<" "<<(radii[radii.size()-2]+radii[radii.size()-1])/2*cm_per_pixel/kpc<<endl;
+ ofs_sbp<<"win 2"<<endl;
+ ofs_sbp<<"yplot 5 6"<<endl;
+ ofs_sbp<<"loc 0 0 1 1"<<endl;
+ ofs_sbp<<"vie .1 .1 .9 .4"<<endl;
+ ofs_sbp<<"la x radius (kpc)"<<endl;
+ ofs_sbp<<"la y chi"<<endl;
+ ofs_sbp<<"log x"<<endl;
+ ofs_sbp<<"log y off"<<endl;
+ ofs_sbp<<"r x "<<(radii[1]+radii[0])/2*cm_per_pixel/kpc<<" "<<(radii[radii.size()-2]+radii[radii.size()-1])/2*cm_per_pixel/kpc<<endl;
+
+ }
+ // cout<<sbps_all.size()<<"\t"<<sbps.size()<<"\t"<<sbps_inner_cut_size<<endl;
+ for(size_t i=1;i<sbps_all.size();++i)
+ {
+ double x=(radii_all[i]+radii_all[i-1])/2;
+ double y=sbps_all[i-1];
+ double ye=sbpe_all[i-1];
+ ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<y<<"\t"<<ye<<endl;
+ }
+ if(sbps_inner_cut_size>=1)
+ {
+ ofs_sbp<<"no no no"<<endl;
+ for(int i=1;i<sbps_inner_cut_size+1;++i)
+ {
+ double x=(radii_all[i]+radii_all[i-1])/2;
+ double ym=mv[i-1];
+ ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<ym<<"\t"<<"0"<<endl;
+ }
+ }
+ ofs_sbp<<"no no no"<<endl;
+ for(size_t i=sbps_inner_cut_size;i<sbps_all.size();++i)
+ {
+ double x=(radii_all[i]+radii_all[i-1])/2;
+ double ym=mv[i-1];
+ ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<ym<<"\t"<<"0"<<endl;
+ }
+ ofs_sbp<<"no no no"<<endl;
+ //bkg level
+ bkg_level=abs(f.get_param_value("bkg"));
+ for(size_t i=0;i<sbps_all.size();++i)
+ {
+ double x=(radii_all[i]+radii_all[i-1])/2;
+ ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<bkg_level<<"\t0"<<endl;
+ }
+ ofs_sbp<<"no no no"<<endl;
+ //rc
+ double rc_kpc=abs(f.get_param_value("rc")*cm_per_pixel/kpc);
+ double max_sbp=*max_element(sbps_all.begin(),sbps_all.end());
+ double min_sbp=*min_element(sbps_all.begin(),sbps_all.end());
+ for(double x=min_sbp;x<=max_sbp;x+=(max_sbp-min_sbp)/100)
+ {
+ ofs_sbp<<rc_kpc<<"\t"<<x<<"\t"<<"0"<<endl;
+ }
+ //resid
+ ofs_sbp<<"no no no"<<endl;
+ for(size_t i=1;i<sbps.size();++i)
+ {
+ double x=(radii[i]+radii[i-1])/2;
+ //double y=sbps[i-1];
+ //double ye=sbpe[i-1];
+ double ym=mv[i-1];
+ ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<(ym-sbps[i-1])/sbpe[i-1]<<"\t"<<1<<endl;
+ }
+
+ //zero level of resid
+ ofs_sbp<<"no no no"<<endl;
+ for(size_t i=1;i<sbps.size();++i)
+ {
+ double x=(radii[i]+radii[i-1])/2;
+ //double y=sbps[i-1];
+ //double ye=sbpe[i-1];
+ //double ym=mv[i-1];
+ ofs_sbp<<x*cm_per_pixel/kpc<<"\t"<<0<<"\t"<<0<<endl;
+ }
+
+ mv=betao.eval(radii,p);
+ ofstream ofs_rho("rho_fit.qdp");
+ ofstream ofs_rho_data("rho_fit.dat");
+ ofstream ofs_entropy("entropy.qdp");
+ ofs_rho<<"la x radius (kpc)"<<endl;
+ ofs_rho<<"la y density (cm\\u-3\\d)"<<endl;
+ /*
+ for(int i=1;i<sbps.size();++i)
+ {
+ double x=(radii[i]+radii[i-1])/2;
+ double ym=mv[i-1];
+ ofs_rho<<x*cm_per_pixel/kpc<<"\t"<<ym<<endl;
+ }
+ */
+
+ //double lower,upper;
+ double dr=1;
+ //calculate the mass profile
+ //const double G=6.673E-8;//cm^3 g^-1 s^-2
+ // Molecular weight per electron
+ // Reference: Ettori et al. 2013, Space Sci. Rev., 177, 119-154; Eq.(9) below
+ static const double mu=1.155;
+ static const double mp=1.67262158E-24;//g
+ static const double M_sun=1.98892E33;//g
+ //static const double k=1.38E-16;
+
+ ofstream ofs_mass("mass_int.qdp");
+ ofstream ofs_mass_dat("mass_int.dat");
+ ofstream ofs_overdensity("overdensity.qdp");
+ ofstream ofs_gas_mass("gas_mass_int.qdp");
+ //ofs_mass<<"la x radius (kpc)"<<endl;
+ //ofs_mass<<"la y mass enclosed (solar mass)"<<endl;
+ //ofs_overdensity<<"la x radius (kpc)"<<endl;
+ //ofs_overdensity<<"la y overdensity"<<endl;
+ double gas_mass=0;
+ for(double r=1;r<200000;r+=dr)
+ {
+ dr=r/100;
+ double r1=r+dr;
+ double r_cm=r*cm_per_pixel;
+ double r1_cm=r1*cm_per_pixel;
+ double dr_cm=dr*cm_per_pixel;
+ double V_cm3=4./3.*pi*(dr_cm*(r1_cm*r1_cm+r_cm*r_cm+r_cm*r1_cm));
+ double ne=beta_func(r,n0,rc,beta);//cm^-3
+
+ double dmgas=V_cm3*ne*mu*mp/M_sun;
+ gas_mass+=dmgas;
+
+ ofs_gas_mass<<r*cm_per_pixel/kpc<<"\t"<<gas_mass<<endl;
+ double ne1=beta_func(r1,n0,rc,beta);//cm^3
+
+ double T_keV=Tprof(r);
+ double T1_keV=Tprof(r1);
+
+ //double T_K=T_keV*11604505.9;
+ //double T1_K=T1_keV*11604505.9;
+
+ double dlnT=log(T1_keV/T_keV);
+ double dlnr=log(r+dr)-log(r);
+ double dlnn=log(ne1/ne);
+
+ //double r_kpc=r_cm/kpc;
+ double r_Mpc=r_cm/Mpc;
+ //double M=-r_cm*T_K*k/G/mu/mp*(dlnT/dlnr+dlnn/dlnr);
+ //ref:http://adsabs.harvard.edu/abs/2012MNRAS.422.3503W
+ //Walker et al. 2012
+ double M=-3.68E13*M_sun*T_keV*r_Mpc*(dlnT/dlnr+dlnn/dlnr);
+ double rho=M/(4./3.*pi*r_cm*r_cm*r_cm);
+
+ double S=T_keV/pow(ne,2./3.);
+ //cout<<r<<"\t"<<M/M_sun<<endl;
+ //cout<<r<<"\t"<<T_keV<<endl;
+
+ ofs_rho<<r*cm_per_pixel/kpc<<"\t"<<ne<<endl;
+ ofs_rho_data<<r*cm_per_pixel/kpc<<"\t"<<ne<<endl;
+ ofs_entropy<<r*cm_per_pixel/kpc<<"\t"<<S<<endl;
+#if 0
+ if(r*cm_per_pixel/kpc<5)
+ {
+ continue;
+ }
+#endif
+ ofs_mass<<r*cm_per_pixel/kpc<<"\t"<<M/M_sun<<endl;
+ if(r<radii.at(sbps.size()))
+ {
+ ofs_mass_dat<<r*cm_per_pixel/kpc<<"\t0\t"<<M/M_sun<<"\t"<<M/M_sun*.1<<endl;
+ }
+ ofs_overdensity<<r*cm_per_pixel/kpc<<"\t"<<rho/calc_critical_density(z)<<endl;
+
+ }
+}