1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Cosmology calculator with Chandra ACIS-specific quantities support.
"""
import math
from astropy.cosmology import FlatLambdaCDM
import astropy.units as au
from .acis import ACIS
class Calculator:
"""
Calculate various quantities under a specific cosmology, as well
as some values with respect to Chandra ACIS detector properties.
"""
def __init__(self, H0=71.0, Om0=0.27, Ob0=0.046):
self.H0 = H0 # [km/s/Mpc]
self.Om0 = Om0
self.Ode0 = 1.0 - Om0
self.Ob0 = Ob0
self._cosmo = FlatLambdaCDM(H0=H0, Om0=Om0, Ob0=Ob0)
def evolution_factor(self, z):
return self._cosmo.efunc(z)
def luminosity_distance(self, z, unit="Mpc"):
dist = self._cosmo.luminosity_distance(z)
return dist.to(au.Unit(unit)).value
def angular_diameter_distance(self, z, unit="Mpc"):
dist = self._cosmo.angular_diameter_distance(z)
return dist.to(au.Unit(unit)).value
def kpc_per_arcsec(self, z):
"""
Calculate the transversal length (unit: kpc) corresponding to
1 arcsec at the *angular diameter distance* of z.
"""
dist_kpc = self.angular_diameter_distance(z, unit="kpc")
return dist_kpc * au.arcsec.to(au.rad)
def kpc_per_pix(self, z):
"""
Calculate the transversal length (unit: kpc) corresponding to
1 ACIS pixel (i.e., 0.492 arcsec) at the *angular diameter distance*
of z.
"""
pix = ACIS.pixel2arcsec * au.arcsec
dist_kpc = self.angular_diameter_distance(z, unit="kpc")
return dist_kpc * pix.to(au.rad).value
def cm_per_pix(self, z):
"""
Calculate the transversal length (unit: cm) corresponding to
1 ACIS pixel (i.e., 0.492 arcsec) at the *angular diameter distance*
of z.
"""
return self.kpc_per_pix(z) * au.kpc.to(au.cm)
def norm_apec(self, z):
"""
The normalization factor of the XSPEC APEC model assuming
EM = 1 (i.e., n_e = n_H = 1 cm^-3, and V = 1 cm^3)
norm = 1e-14 / (4*pi* (D_A * (1+z))^2) * int(n_e * n_H) dV
unit: [cm^-5]
This value will be used to calculate the cooling function values.
References
----------
* XSPEC: APEC model
https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XSmodelApec.html
"""
da = self.angular_diameter_distance(z, unit="cm")
norm = 1e-14 / (4*math.pi * (da * (1+z))**2)
return norm
|