1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
#!/usr/bin/env python
import sys
import numpy
import scipy.interpolate
confidence_level=.68
def read_file(param):
delta=float(param[0])
file_mass_center=open("mass_int_center.qdp").readlines();
file_delta_center=open("overdensity_center.qdp").readlines();
center_r=0
center_m=0
center_gm=0
center_gf=0
for i in range(0,len(file_mass_center)):
lm=file_mass_center[i].strip();
ld=file_delta_center[i].strip();
r,m=lm.split()
r,d=ld.split()
r=float(r)
d=float(d)
m=float(m)
if m<1e11:
continue
if d<delta:
center_r=r
center_m=m
for j in open("gas_mass_int_center.qdp"):
rgm,gm=j.strip().split()
rgm=float(rgm)
gm=float(gm)
if rgm>r:
center_gm=gm
center_gf=gm/m
break
break
if len(param)>1 and param[1]=='c':
#print("%s(<r%d)=%E solar mass"%("mass",delta,center_m))
#print("%s%d=%E kpc"%("r",delta,center_r))
#print("%s(<r%d)=%E solar mass"%("gas mass",delta,center_gm))
#print("%s(<r%d)=%E"%("gas fraction",delta,center_gf))
return center_m,center_r,center_gm,center_gf,None,None,None,None
#print(center_gm,center_gf)
file_mass=open('summary_mass_profile.qdp').readlines()
file_delta=open('summary_overdensity.qdp').readlines()
file_gm=open('summary_gas_mass_profile.qdp')
flag=True
rlist=[]
mlist=[]
gmlist=[]
gflist=[]
old_m=0
invalid_count=0
for i in range(0,len(file_mass)):
lm=file_mass[i].strip()
ld=file_delta[i].strip()
if lm[0]=='n':
flag=True
old_m=0
continue
if not flag:
continue
r,m=lm.split()
m=float(m)
if m<1e12:
continue
if m<old_m:
invalid_count+=1
flag=False
continue
r,d=ld.split()
d=float(d)
r=float(r)
if d<delta:
#print("%s %e"%(d,m))
mlist.append(m)
rlist.append(r)
flag1=True
while True:
lgm=file_gm.readline().strip()
if lgm[0]=='n':
break
rgm,gm=lgm.split()
rgm=float(rgm)
gm=float(gm)
if rgm>r and flag1:
gmlist.append(gm)
flag1=False
gflist.append(gm/mlist[-1])
#print(gm,gflist[-1])
flag=False
old_m=m
print("%d abnormal data dropped"%(invalid_count))
return center_m,center_r,center_gm,center_gf,mlist,rlist,gmlist,gflist
#center_m=numpy.mean(mlist)
#center_r=numpy.mean(rlist)
center_m,center_r,center_gm,center_gf,mlist,rlist,gmlist,gflist=read_file(sys.argv[1:])
delta=float(sys.argv[1])
if len(sys.argv)>2 and sys.argv[2]=='c':
print("%s(<r%d)=%E solar mass"%("mass",delta,center_m))
print("%s%d=%E kpc"%("r",delta,center_r))
print("%s(<r%d)=%E solar mass"%("gas mass",delta,center_gm))
print("%s(<r%d)=%E"%("gas fraction",delta,center_gf))
sys.exit(0)
mlist.sort()
rlist.sort()
gflist.sort()
gmlist.sort()
m_idx=-1
r_idx=-1
gm_idx=-1
gf_idx=-1
delta=float(sys.argv[1])
for i in range(len(mlist)-1):
if (center_m-mlist[i])*(center_m-mlist[i+1])<=0:
m_idx=i
break
for i in range(len(rlist)-1):
if (center_r-rlist[i])*(center_r-rlist[i+1])<=0:
r_idx=i
break
for i in range(len(gmlist)-1):
if (center_gm-gmlist[i])*(center_gm-gmlist[i+1])<=0:
gm_idx=i
break
for i in range(len(gflist)-1):
if (center_gf-gflist[i])*(center_gf-gflist[i+1])<=0:
gf_idx=i
break
if m_idx==-1 or r_idx==-1 or gf_idx==-1 or gm_idx==-1:
print("Error, the center value is not enclosed by the Monte-Carlo realizations, please check the result!")
print("m:%E %E %E"%(center_m,mlist[0],mlist[-1]))
print("gm:%E %E %E"%(center_gm,gmlist[0],gmlist[-1]))
print("gf:%E %E %E"%(center_gf,gflist[0],gflist[-1]))
print("r:%E %E %E"%(center_r,rlist[0],rlist[-1]))
sys.exit(1)
mlidx=int(m_idx*(1-confidence_level))
muidx=m_idx-1+int((len(mlist)-m_idx)*confidence_level)
rlidx=int(r_idx*(1-confidence_level))
ruidx=r_idx-1+int((len(rlist)-r_idx)*confidence_level)
gmlidx=int(gm_idx*(1-confidence_level))
gmuidx=gm_idx-1+int((len(gmlist)-gm_idx)*confidence_level)
gflidx=int(gf_idx*(1-confidence_level))
gfuidx=gf_idx-1+int((len(gflist)-gf_idx)*confidence_level)
merr1=mlist[mlidx]-center_m
merr2=mlist[muidx]-center_m
rerr1=rlist[rlidx]-center_r
rerr2=rlist[ruidx]-center_r
gmerr1=gmlist[gmlidx]-center_gm
gmerr2=gmlist[gmuidx]-center_gm
gferr1=gflist[gflidx]-center_gf
gferr2=gflist[gfuidx]-center_gf
#print("%d %d %d"%(mlidx,m_idx,muidx))
#print("%d %d %d"%(rlidx,r_idx,ruidx))
print("m%d=\t%e\t %e/+%e solar mass (1 sigma)"%(delta,center_m,merr1,merr2))
print("gas_m%d=\t%e\t %e/+%e solar mass (1 sigma)"%(delta,center_gm,gmerr1,gmerr2))
print("gas_fraction%d=\t%e\t %e/+%e (1 sigma)"%(delta,center_gf,gferr1,gferr2))
print("r%d=\t%d\t %d/+%d kpc (1 sigma)"%(delta,center_r,rerr1,rerr2))
|