aboutsummaryrefslogtreecommitdiffstats
path: root/doc/HOWTO_chandra_acis_analysis.txt
blob: fcca0c39bf85e9ac6301282af69c98fbda6e4949 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
##
## HOWTO
## Analyze Chandra ACIS data
##
## Weitian LI <liweitianux@gmail.com>
## Updated: 2017-08-15
##


Step-by-step guide to analyze ACIS data:

 (1) Create new level=2 events with newest calibrations, and build
     "manifest.yaml" for later use:
     $ repro_acis.py
(??) <TODO> build 'results.yaml' (ra_ned, dec_ned, nh, z, etc.)
 (2) $ mkdir -p evt bkg img spc/profile mass
 (3) $ cd evt
     $ ln -s ../repro/*_repro_evt2.fits .
 (4) $ clean_evt2.py
 (5) $ cd ../bkg
     $ ln -s ../evt/evt2*_clean.fits .
 (6) $ make_blanksky.py
 (7) $ ds9 evt2*_clean.fits
     Select some region on the CCD edges that are as far from the
     extended source as possible as the *local background*, then
     save to a region file: 'lbkg.reg'.
 (8) Estimate the total photon counts within the local background region:
     $ dmlist "evt2*_clean.fits[sky=region(lbkg.reg)][energy=400:8000]" counts
     Enlarge the regions if the total photon counts are too small
     (e.g., say 3,000).
 (9) Query the redshift from NED and nH from the HEASARC nH tool
(10) $ ciao_bkg_spectra.sh reg=lbkg.reg
(11) $ xspec
     xspec> @xspec_lbkg_model.xcm
     xspec> fit
     xspec> cpd /xs
     xspec> pl l del
     xspec> @<path>/xspec_bkgcorr.tcl
(??) <TODO> If the background correction does not look good, e.g., the source
     is very distant and compact and the emission is very faint, then it is
     recommended to just use the *local background*.
     Therefore, shrink the above 'lbkg.reg' accordingly and save as
     'localbkg.reg', then extract the local background spectrum:
     $ punlearn dmextract
     $ dmextract infile="evt2_*_clean.fits[sky=region(localbkg.reg)][bin pi" \
       outfile=localbkg.pi
(??) <TODO> Add background spectrum to manifest:
     $ manifest.py setpath bkg_spec <bkgcorr_blanksky_lbkg.pi | localbkg.pi>
(12) $ cd ../img
     $ ln -s ../evt/evt2*_clean.fits .
     $ ln -s ../bkg/bkgcorr_blanksky_lbkg.pi .  # maybe 'lbkg.pi'
(??) <TODO> create an image (0.7-2 keV) to determine the centroid
     $ event2image.py -H 2000
(13) $ ds9 evt2*_clean.fits
     Roughly select the source center and save the region as 'cstart.reg'
(??) <TODO> Calculate the X-ray centroid:
     $ calc_centroid.py -s cstart.reg -i img_c*_e700-2000.fits -V
     Check whether the calculated centroid is OK; if not, manually
     adjust the centroid position, and overwrite 'centroid.reg'
(??) <TODO> Generate regions for SBP extraction (sbprofile.reg):
     $ make_sbprofile_reg.py -b <bkgd> -V
(??) <TODO> Generate regions for deprojected spectral analysis (rspec.reg):
     $ chandra_genspcreg.sh evt2_c*_clean.fits <bkgd> centroid.reg rspec.reg
     $ manifest.py setpath rspec_reg rspec.reg
(15) $ cd ../spc/profile
     $ ln -s ../../evt/evt2*_clean.fits .
     $ ln -s ../../bkg/bkgcorr_blanksky_lbkg.pi .  # maybe 'lbkg.pi'
     $ ln -s ../../img/rspec.reg img_rspec.reg
(16) ds9 open 'evt2*_clean.fits' with regs 'img_rspec.reg';
     adjust the regions and save as 'rspec.reg'
(18) $ ciao_deproj_spectra.sh reg=rspec.reg
(19) Fit the radial spectra to derive the radial temperature profile,
     as well as the average temperature and abundance:
     $ xspec
     xspec> @xspec_deproj.xcm
     xspec> fit
     (tweaks parameters when necessary)
     xspec> @<path>/xspec_tprofile.tcl
     (calculate average temperature and abundance)
     xspec> @<path>/xspec_avg_tz.tcl
     xspec> exit
(20) Fix 'NULL' values in 'tprofile.qdp', 'tprofile.txt' & 'tz_average.txt'
(21) $ cd ../../img;
(22) create config '<NAME>_expcorr.conf' (for batch process):
     basedir    ..
     reg        sbprofile.reg
     nh         <nh>
     z          <redshift>
     temp       <avg_temp>
     abund      <avg_abund>
(23) $ ciao_expcorr_sbp.sh basedir=.. nh=<nh> z=<redshift> temp=<avg_temp> abund=<avg_abund>

## --------------------------------------------------------
(24) $ cd ../mass
     $ ln -s ../img/sbprofile.txt .
     $ ln -s ../spc/profile/tprofile.txt .
(25) Copy the sample config files located at 'files' directory:
     * mass.conf
     * wang2012_param.txt
     * sbp_sbeta.conf
     * sbp_dbeta.conf
(26) Fill 'nH', 'abund' in 'mass.conf';
     and 'z' in 'sbp_sbeta.conf' and 'sbp_dbeta.conf'
(27) $ fittp tprofile.txt wang2012_param.txt
(28) $ qdp fit_result.qdp
     (check fitted temperature profile, and adjust parameter accordingly)
(29) $ fitsbp sbp_sbeta.conf mass.conf   # single-beta sbp
     $ fitsbp sbp_dbeta.conf mass.conf   # double-beta sbp
(30) $ qdp sbp_fit.qdp   # check fitted sbp
(31) $ ln -s sbp_sbeta.conf sbp.cfg   # use single-beta
     $ ln -s sbp_dbeta.conf sbp.cfg   # use double-beta
(32) $ fitnfw <z> [rmin_kpc]
(33) $ qdp nfw_fit_result.qdp   # check fitted nfw profile, and ajust 'rmin_kpc'
(34) Update 'nfw_rmin_kpc' in 'mass.conf
(35) $ fitmass mass.conf c    # calculate the central values
(36) $ fitmass mass.conf 2>&1 | tee mass_<date>.log    # calculate mass data
(37) Update the INFO.json with calculated values from 'final_result.txt':
     $ collect_infodata.sh
(38) $ cd ../img
     $ chandra_update_xcentroid.sh
(39) $ cd ../spc/profile
(40) $ ciao_r500avgt.sh inner=0.1 outer=0.5   # check 0.5R500 range
     $ ciao_r500avgt.sh inner=0.2 outer=0.5
(41) $ xspec
     xspec> @xspec_r500avgt_0.1-0.5.xcm
     xspec> fit; cpd /xs; pl l del;
     xspec> error 1.0 2 3
     (calculate the 1 sigma errors for temperature and abundance)
(42) update the following values in the INFO.json file:
     * 'T(0.1-0.5 R500)'
     * 'Z(0.1-0.5 R500)'
(43) repeat the above two steps for region "0.2-0.5 R500", and update
     the values of 'T(0.2-0.5 R500)' and 'Z(0.2-0.5 R500)'.

## --------------------------------------------------------
(44) $ cd ../..;  # in 'repro' dir
     $ cp -a mass lxfx; cd lxfx;
(45) $ calclxfx global.cfg c 500 200  # 'c' for center values
     $ calclxfx global.cfg 500 200  # calc 'errors'
(46) $ getlxfx . c 500 200  # for center results
     $ getlxfx . 500 200  # for all results (with errors)

## --------------------------------------------------------
(47) $ cd ..; cd spc/profile
(48) Calculate cooling time:
     $ ciao_calc_ct.sh
     check results in file 'cooling_results.txt'
(49) Calculate Csb (surface brightness concentration):
     $ ciao_calc_csb.sh
     (it will open ds9 to show the regions, modify the regions if necessary;
      and answer y/n/m to continue)
     check results in file 'csb_results.txt'