1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
/*
Gas density profile derived from nfw mass profile and temperature profile
Author: Junhua Gu
Last modification: 20120721
*/
#ifndef NFW_NE
#define NFW_NE
#include "projector.hpp"
#include <algorithm>
#include <functional>
#include <numeric>
//a series of physical constants
static const double G=6.673E-8;//cm^3 g^-1 s^2
static const double mu=1.4074;
static const double mp=1.67262158E-24;//g
static const double k=1.60217646E-9;//erg/keV
static const double c=2.99792458E10;//cm/s
namespace opt_utilities
{
//the nfw mass enclosed within a radius r, with parameter rho0 and rs
template <typename T>
T nfw_mass_enclosed(T r,T rho0,T rs)
{
return 4*pi*rho0*rs*rs*rs*(std::log((r+rs)/rs)-r/(r+rs));
}
//average mass density
template <typename T>
T nfw_average_density(T r,T rho0,T rs)
{
if(r==0)
{
return rho0;
}
return nfw_mass_enclosed(r,rho0,rs)/(4.*pi/3*r*r*r);
}
//calculate critical density from z, under following cosmological constants
static double calc_critical_density(double z,
const double H0=2.3E-18,
const double Omega_m=.27)
{
const double E=std::sqrt(Omega_m*(1+z)*(1+z)*(1+z)+1-Omega_m);
const double H=H0*E;
return 3*H*H/8/pi/G;
}
//a class wraps method of calculating gas density from mass profile and temperature profile
template <typename T>
class nfw_ne
:public model<std::vector<T>,std::vector<T>,std::vector<T> >
{
private:
//pointer to temperature profile function
func_obj<T,T>* pTfunc;
//cm per pixel
T cm_per_pixel;
public:
//default constructor
nfw_ne()
:pTfunc(0),cm_per_pixel(1)
{
this->push_param_info(param_info<std::vector<T>,std::string>("rho0",1));//in mp
this->push_param_info(param_info<std::vector<T>,std::string>("rs",100));
this->push_param_info(param_info<std::vector<T>,std::string>("n0",.01));
}
//copy constructor
nfw_ne(const nfw_ne& rhs)
:cm_per_pixel(rhs.cm_per_pixel)
{
if(rhs.pTfunc)
{
pTfunc=rhs.pTfunc->clone();
}
else
{
pTfunc=0;
}
//initial parameter list
this->push_param_info(param_info<std::vector<T>,std::string>("rho0",rhs.get_param_info("rho0").get_value()));
this->push_param_info(param_info<std::vector<T>,std::string>("rs",rhs.get_param_info("rs").get_value()));
this->push_param_info(param_info<std::vector<T>,std::string>("n0",rhs.get_param_info("n0").get_value()));
}
//assignment operator
nfw_ne& operator=(const nfw_ne& rhs)
{
cm_per_pixel=rhs.cm_per_pixel;
if(pTfunc)
{
pTfunc->destroy();
}
if(rhs.pTfunc)
{
pTfunc=rhs.pTfunc->clone();
}
}
//destructor
~nfw_ne()
{
if(pTfunc)
{
pTfunc->destroy();
}
}
public:
//attach the temperature profile function
void attach_Tfunc(const func_obj<T,T>& Tf)
{
if(pTfunc)
{
pTfunc->destroy();
}
pTfunc=Tf.clone();
}
//set the cm per pixel value
void set_cm_per_pixel(const T& x)
{
cm_per_pixel=x;
}
//clone self
nfw_ne<T>* do_clone()const
{
return new nfw_ne<T>(*this);
}
//calculate density under parameters p, at radius r
/*
r is a vector, which stores a series of radius values
the annuli or pie regions are enclosed between any two
adjacent radii.
so the returned value has length smaller than r by 1.
*/
std::vector<T> do_eval(const std::vector<T> & r,
const std::vector<T>& p)
{
assert(pTfunc);
//const T kT_erg=k*5;
T rho0=std::abs(p[0])*mp;
T rs=std::abs(p[1]);
T n0=std::abs(p[2]);
T rs_cm=rs*cm_per_pixel;
std::vector<T> yvec(r.size());
const T kT_erg0=pTfunc->eval((r.at(0)+r.at(1))/2)*k;
//calculate the integration
#pragma omp parallel for schedule(dynamic)
for(int i=0;i<r.size();++i)
{
T r_cm=r[i]*cm_per_pixel;
T kT_erg=pTfunc->eval(r[i])*k;
if(abs(r_cm)==0)
{
continue;
}
yvec.at(i)=G*nfw_mass_enclosed(r_cm,rho0,rs_cm)*mu*mp/kT_erg/r_cm/r_cm;
//std::cout<<r_cm/1e20<<"\t"<<nfw_mass_enclosed(r_cm,rho0,rs_cm)/1e45<<std::endl;
//std::cout<<r_cm/1e20<<"\t"<<G*nfw_mass_enclosed(r_cm,rho0,rs_cm)*mu*mp/kT_erg/r_cm/r_cm<<std::endl;
}
std::vector<T> ydxvec(r.size()-1);
#pragma omp parallel for schedule(dynamic)
for(int i=1;i<r.size();++i)
{
T dr=r[i]-r[i-1];
T dr_cm=dr*cm_per_pixel;
ydxvec.at(i-1)=(yvec[i]+yvec[i-1])/2*dr_cm;
}
std::partial_sum(ydxvec.begin(),ydxvec.end(),ydxvec.begin());
//construct the result
std::vector<T> result(r.size()-1);
#pragma omp parallel for schedule(dynamic)
for(int i=0;i<r.size()-1;++i)
{
T y=-ydxvec.at(i);
T kT_erg=pTfunc->eval(r[i])*k;
//std::cout<<y<<std::endl;
result.at(i)=n0*exp(y)*kT_erg0/kT_erg;
}
return result;
}
};
}
#endif
|