1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
#!/usr/bin/env python3
#
# Copyright (c) 2017 Weitian LI <liweitianux@live.com>
# MIT license
"""
Calculate the coordinate of the emission centroid within the image.
The image are smoothed first, and then an iterative procedure with
two phases is applied to determine the emission centroid.
"""
import os
import sys
import argparse
import subprocess
import tempfile
from _context import acispy
from acispy.manifest import get_manifest
from acispy.pfiles import setup_pfiles
from acispy.ds9 import ds9_view
from acispy.regions import Regions
def smooth_image(infile, outfile=None,
kernelspec="lib:gaus(2,5,1,10,10)", method="fft",
clobber=False):
"""
Smooth the image by a Gaussian kernel using the ``aconvolve`` tool.
Parameters
----------
infile : str
Path to the input image file
outfile : str, optional
Filename/path of the output smoothed image
(default: build in format ``<infile_basename>_aconv.fits``)
kernelspec : str, optional
Kernel specification for ``aconvolve``
method : str, optional
Smooth method for ``aconvolve``
Returns
-------
outfile : str
Filename/path of the smoothed image
"""
clobber = "yes" if clobber else "no"
if outfile is None:
outfile = os.path.splitext(infile)[0] + "_aconv.fits"
subprocess.check_call(["punlearn", "aconvolve"])
subprocess.check_call([
"aconvolve", "infile=%s" % infile, "outfile=%s" % outfile,
"kernelspec=%s" % kernelspec, "method=%s" % method,
"clobber=%s" % clobber
])
return outfile
def get_peak(image, center=None, radius=300):
"""
Get the peak coordinate on the image within the circle if specified.
Parameters
----------
image : str
Path to the image file.
center : 2-float tuple
Central (physical) coordinate of the circle.
radius : float
Radius (pixel) of the circle.
Returns
-------
peak : 2-float tuple
(Physical) coordinate of the peak.
"""
subprocess.check_call(["punlearn", "dmstat"])
subprocess.check_call([
"dmstat", "infile=%s" % image,
"centroid=no", "media=no", "sigma=no", "clip=no"
])
peak = subprocess.check_output([
"pget", "dmstat", "out_max_loc"
]).decode("utf-8").strip()
peak = peak.split(",")
return (float(peak[0]), float(peak[1]))
def get_centroid(image, center, radius=100):
"""
Calculate the centroid on image within the specified circle.
Parameters
----------
image : str
Path to the image file.
center : 2-float tuple
Central (physical) coordinate of the circle.
radius : float
Radius (pixel) of the circle.
Returns
-------
centroid : 2-float tuple
(Physical) coordinate of the centroid.
"""
x, y = center
with tempfile.NamedTemporaryFile(mode="w+") as fp:
fp.file.write("circle(%f,%f,%f)\n" % (x, y, radius))
fp.file.flush()
subprocess.check_call(["punlearn", "dmstat"])
subprocess.check_call([
"dmstat", "infile=%s[sky=region(%s)]" % (image, fp.name),
"centroid=yes", "media=no", "sigma=no", "clip=no"
])
centroid = subprocess.check_output([
"pget", "dmstat", "out_cntrd_phys"
]).decode("utf-8").strip()
centroid = centroid.split(",")
return (float(centroid[0]), float(centroid[1]))
def main():
parser = argparse.ArgumentParser(
description="Calculate the emission centroid within the image")
parser.add_argument("-i", "--infile", dest="infile", required=True,
help="input image file (e.g., 0.7-2.0 keV)")
parser.add_argument("-o", "--outfile", dest="outfile",
default="centroid.reg",
help="output centroid region file " +
"(default: centroid.reg")
parser.add_argument("-R", "--radius1", dest="radius1",
type=float, default=300,
help="circle radius [pixel] for first phase " +
"centroid calculation (default: 300 pixel)")
parser.add_argument("-r", "--radius2", dest="radius2",
type=float, default=100,
help="circle radius [pixel] for second phase " +
"calculation to tune centroid (default: 100 pixel)")
parser.add_argument("-n", "--niter", dest="niter",
type=int, default=5,
help="iterations for each phase (default: 5)")
parser.add_argument("-s", "--start", dest="start",
help="a region file containing a circle/point " +
"that specifies the starting point " +
"(default: using the peak of the image)")
parser.add_argument("-V", "--view", dest="view", action="store_true",
help="open DS9 to view output centroid")
parser.add_argument("-C", "--clobber", dest="clobber", action="store_true",
help="overwrite existing files")
args = parser.parse_args()
setup_pfiles(["aconvolve", "dmstat"])
print("Smooth input image using 'aconvolve' ...", file=sys.stderr)
img_smoothed = smooth_image(args.infile, clobber=args.clobber)
if args.start:
print("Get starting point from region file: %s" % args.start,
file=sys.stderr)
region = Regions(args.start).regions[0]
center = (region.xc, region.yc)
else:
print("Use peak as the starting point ...", file=sys.stderr)
center = get_peak(img_smoothed)
print("Starting point: (%f, %f)" % center, file=sys.stderr)
centroid = center
for phase, radius in enumerate([args.radius1, args.radius2]):
print("Calculate centroid phase %d (circle radius: %.1f)" %
(phase+1, radius), file=sys.stderr)
for i in range(args.niter):
print("%d..." % (i+1), end="", flush=True, file=sys.stderr)
centroid = get_centroid(img_smoothed, center=centroid,
radius=radius)
print("Done!", file=sys.stderr)
open(args.outfile, "w").write("point(%f,%f)\n" % centroid).close()
print("Saved centroid to file:", args.outfile, file=sys.stderr)
if args.view:
ds9_view(img_smoothed, regfile=args.outfile)
# Add calculated centroid region to manifest
manifest = get_manifest()
key = "reg_centroid"
manifest.setpath(key, args.outfile)
if __name__ == "__main__":
main()
|