1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
#ifndef PROJ_HPP
#define PROJ_HPP
/*
Defining the class that is used to consider the projection effect
Author: Junhua Gu
Last modified: 2011.01.01
*/
#include <core/fitter.hpp>
#include <vector>
#include <cmath>
static const double pi=4*atan(1);
// Ratio of the electron density (n_e) to the proton density (n_p)
// n_gas = n_e + n_p ~= 1.826 n_e => n_e / n_p ~= 1.21
// Reference: Ettori et al. 2013, Space Sci. Rev., 177, 119-154; Eq.(9) below
static const double ne_np_ratio = 1.21;
namespace opt_utilities
{
//This is used to project a 3-D surface brightness model to 2-D profile
template <typename T>
class projector
:public model<std::vector<T>,std::vector<T>,std::vector<T> >
{
private:
//Points to a 3-D model that is to be projected
model<std::vector<T>,std::vector<T>,std::vector<T> >* pmodel;
func_obj<T,T>* pcfunc;
T cm_per_pixel;
public:
//default cstr
projector()
:pmodel(NULL_PTR),pcfunc(NULL_PTR),cm_per_pixel(1)
{}
//copy cstr
projector(const projector& rhs)
:model<std::vector<T>,std::vector<T>,std::vector<T> >(rhs)
{
cm_per_pixel=rhs.cm_per_pixel;
attach_model(*(rhs.pmodel));
if(rhs.pcfunc)
{
pcfunc=rhs.pcfunc->clone();
}
else
{
pcfunc=NULL_PTR;
}
}
//assign operator
projector& operator=(const projector& rhs)
{
if(pmodel)
{
pmodel->destroy();
}
if(pcfunc)
{
pcfunc->destroy();
}
if(rhs.pcfunc)
{
pcfunc=rhs.pcfunc->clone();
}
if(rhs.pmodel)
{
pmodel=rhs.pmodel->clone();
}
}
//destr
~projector()
{
if(pmodel)
{
pmodel->destroy();
}
if(pcfunc)
{
pcfunc->destroy();
}
}
//used to clone self
model<std::vector<T>,std::vector<T>,std::vector<T> >*
do_clone()const
{
return new projector(*this);
}
public:
void set_cm_per_pixel(const T& x)
{
cm_per_pixel=x;
}
//attach the model that is to be projected
void attach_model(const model<std::vector<T>,std::vector<T>,std::vector<T> >& m)
{
this->clear_param_info();
for(size_t i=0;i<m.get_num_params();++i)
{
this->push_param_info(m.get_param_info(i));
}
this -> push_param_info(param_info<std::vector<T>,
std::string>("bkg",0,0,1E99));
pmodel=m.clone();
pmodel->clear_param_modifier();
}
void attach_cfunc(const func_obj<T,T>& cf)
{
if(pcfunc)
{
pcfunc->destroy();
}
pcfunc=cf.clone();
}
public:
//calc the volume
/*
This is a sphere that is subtracted by a cycline.
/| |\
/ | | \
| | | |
| | | |
\ | | /
\| |/
*/
T calc_v_ring(T rsph,T rcyc)
{
if(rcyc<rsph)
{
double a=rsph*rsph-rcyc*rcyc;
return 4.*pi/3.*std::sqrt(a*a*a);
}
return 0;
}
//calc the No. nsph sphere's projection volume on the No. nrad pie region
T calc_v(const std::vector<T>& rlist,int nsph,int nrad)
{
if(nsph<nrad)
{
return 0;
}
else if(nsph==nrad)
{
return calc_v_ring(rlist[nsph+1], rlist[nrad]);
}
else {
return (calc_v_ring(rlist[nsph+1], rlist[nrad]) -
calc_v_ring(rlist[nsph], rlist[nrad]) -
calc_v_ring(rlist[nsph+1], rlist[nrad+1]) +
calc_v_ring(rlist[nsph], rlist[nrad+1]));
}
}
public:
bool do_meets_constraint(const std::vector<T>& p)const
{
std::vector<T> p1(this->reform_param(p));
for(size_t i=0;i!=p1.size();++i)
{
if(get_element(p1,i)>this->get_param_info(i).get_upper_limit()||
get_element(p1,i)<this->get_param_info(i).get_lower_limit())
{
// std::cerr<<this->get_param_info(i).get_name()<<"\t"<<p1[i]<<std::endl;
return false;
}
}
std::vector<T> p2(p1.size()-1);
for(size_t i=0;i<p1.size()-1;++i)
{
p2.at(i)=p1[i];
}
return pmodel->meets_constraint(p2);
}
public:
//Perform the projection
std::vector<T> do_eval(const std::vector<T>& x,const std::vector<T>& p)
{
T bkg=std::abs(p.back());
//I think following codes are clear enough :).
std::vector<T> unprojected(pmodel->eval(x,p));
std::vector<T> projected(unprojected.size());
for(size_t nrad=0; nrad<x.size()-1; ++nrad)
{
for(size_t nsph=nrad; nsph<x.size()-1; ++nsph)
{
double v = calc_v(x, nsph, nrad) * pow(cm_per_pixel, 3);
if(pcfunc)
{
double cfunc = (*pcfunc)((x[nsph+1] + x[nsph]) / 2.0);
projected[nrad] += (unprojected[nsph] * unprojected[nsph] *
cfunc * v / ne_np_ratio);
}
else
{
projected[nrad] += unprojected[nsph] * unprojected[nsph] * v;
}
}
double area = pi * (x[nrad+1]*x[nrad+1] - x[nrad]*x[nrad]);
projected[nrad] /= area;
projected[nrad] += bkg;
}
return projected;
}
};
};
#endif
|