aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/utils
diff options
context:
space:
mode:
authorAaron LI <aly@aaronly.me>2019-02-24 14:02:31 +0800
committerAaron LI <aly@aaronly.me>2019-02-24 14:02:31 +0800
commita7bce1d09f29887e01ade221f710651a54fe9b9e (patch)
treeeb8f9216f0b2788413d77d7950bde163a24c7213 /fg21sim/utils
parent2fccca435298939657ac5dac586eae037bd70999 (diff)
downloadfg21sim-a7bce1d09f29887e01ade221f710651a54fe9b9e.tar.bz2
utils/analyze: Extend loglinfit() to accept x/y limits
Diffstat (limited to 'fg21sim/utils')
-rw-r--r--fg21sim/utils/analyze.py32
1 files changed, 27 insertions, 5 deletions
diff --git a/fg21sim/utils/analyze.py b/fg21sim/utils/analyze.py
index a052ad4..b31f7d1 100644
--- a/fg21sim/utils/analyze.py
+++ b/fg21sim/utils/analyze.py
@@ -88,7 +88,10 @@ def countdist_integrated(x, nbin, log=True, xmin=None, xmax=None):
return counts, bins, binedges
-def loglinfit(x, y, coef0=(1, 1), **kwargs):
+def loglinfit(x, y,
+ xlim=(None, None), ylim=(None, None),
+ coef0=(1, 1),
+ **kwargs):
"""
Fit the data points with a log-linear model: y = a * x^b
@@ -96,7 +99,10 @@ def loglinfit(x, y, coef0=(1, 1), **kwargs):
----------
x, y : list[float]
The data points.
- coef0 : two-float tuple/list, optional
+ xlim, ylim : float tuple/list of length 2, optional
+ The minimum/maximum limit of x/y for the fitting.
+ Default: (None, None), i.e., use all the data.
+ coef0 : float tuple/list of length 2, optional
The initial values of the coefficients (a0, b0).
Default: (1, 1)
**kwargs :
@@ -115,9 +121,23 @@ def loglinfit(x, y, coef0=(1, 1), **kwargs):
def _f_poly1(x, a, b):
return a + b * x
- logx = np.log(x)
- logy = np.log(y)
- f_scale = np.mean(logy)
+ x = np.asarray(x)
+ y = np.asarray(y)
+ xmin, xmax = xlim
+ ymin, ymax = ylim
+ if xmin is None:
+ xmin = np.min(x)
+ if xmax is None:
+ xmax = np.max(x)
+ if ymin is None:
+ ymin = np.min(y)
+ if ymax is None:
+ ymax = np.max(y)
+
+ mask = (x >= xmin) & (x <= xmax) & (y >= ymin) & (y <= ymax)
+ logx = np.log(x[mask])
+ logy = np.log(y[mask])
+
args = {
"method": "trf",
"loss": "soft_l1",
@@ -125,8 +145,10 @@ def loglinfit(x, y, coef0=(1, 1), **kwargs):
}
args.update(kwargs)
p, pcov = optimize.curve_fit(_f_poly1, logx, logy, p0=coef0, **args)
+
coef = (np.exp(p[0]), p[1])
perr = np.sqrt(np.diag(pcov))
err = (np.exp(perr[0]), perr[1])
fun = lambda x: np.exp(_f_poly1(np.log(x), *p))
+
return coef, err, fun