1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
# Copyright (c) 2017-2019 Weitian LI <wt@liwt.net>
# MIT License
"""
Functions to help simulate galaxy cluster diffuse emissions.
References
----------
.. [arnaud2005]
Arnaud, Pointecouteau & Pratt 2005, A&A, 441, 893;
http://adsabs.harvard.edu/abs/2005A%26A...441..893
.. [beck2005]
Beck & Krause 2005, AN, 326, 414
http://adsabs.harvard.edu/abs/2005AN....326..414B
.. [cassano2005]
Cassano & Brunetti 2005, MNRAS, 357, 1313
http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C
.. [cassano2007]
Cassano et al. 2007, MNRAS, 378, 1565;
http://adsabs.harvard.edu/abs/2007MNRAS.378.1565C
.. [cassano2012]
Cassano et al. 2012, A&A, 548, A100
http://adsabs.harvard.edu/abs/2012A%26A...548A.100C
.. [fujita2003]
Fujita et al. 2003, ApJ, 584, 190;
http://adsabs.harvard.edu/abs/2003ApJ...584..190F
.. [lokas2001]
Lokas & Mamon 2001, MNRAS, 321, 155
http://adsabs.harvard.edu/abs/2001MNRAS.321..155L
.. [miniati2015]
Miniati & Beresnyak 2015, Nature, 523, 59
http://adsabs.harvard.edu/abs/2015Natur.523...59M
.. [murgia2009]
Murgia et al. 2009, A&A, 499, 679
http://adsabs.harvard.edu/abs/2009A%26A...499..679M
.. [vazza2011]
Vazza et al. 2011, A&A, 529, A17
http://adsabs.harvard.edu/abs/2011A%26A...529A..17V
.. [zandanel2014]
Zandanel, Pfrommer & Prada 2014, MNRAS, 438, 124
http://adsabs.harvard.edu/abs/2014MNRAS.438..124Z
.. [zhuravleva2014]
Zhuravleva et al. 2014, Nature, 515, 85;
http://adsabs.harvard.edu/abs/2014Natur.515...85Z
"""
import logging
import numpy as np
from scipy import integrate
from scipy import optimize
from ...share import COSMO
from ...utils.units import (Units as AU,
Constants as AC,
UnitConversions as AUC)
from ...utils.draw import circle
from ...utils.transform import circle2ellipse
logger = logging.getLogger(__name__)
def beta_model(rho0, rc, beta):
"""
Return a function that calculates the value (gas density) at a radius
according to the β-model with the given parameters.
"""
def func(r):
x = r / rc
return rho0 * (1 + x**2) ** (-1.5*beta)
return func
def calc_gas_density_profile(mass, z, f_rc=0.1, beta=0.8):
"""
Calculate the parameters of the β-model that is used to describe the
gas density profile.
NOTE
----
The core radius is assumed to be: ``rc = 0.1 r_vir``, and the beta
parameters is assumed to be ``β = 0.8``.
Reference: [cassano2005],Sec.(4.1)
Parameters
----------
f_rc : float
The fraction of the core radius to the virial radius.
Default: 0.1
beta : float
The slope parameter of the β-model.
Default: 0.8
Returns
-------
fbeta : function
A function of the β-model.
Unit: [Msun/kpc^3]
"""
r_vir = radius_virial(mass, z) # [kpc]
rc = f_rc * r_vir
fint = beta_model(1, rc, beta)
v = integrate.quad(lambda r: fint(r) * r**2,
a=0, b=r_vir)[0] # [kpc^3]
rho0 = mass * COSMO.baryon_fraction / (4*np.pi * v) # [Msun/kpc^3]
return beta_model(rho0, rc, beta)
def radius_overdensity(mass, overdensity, z=0.0):
"""
Calculate the radius within which the mean density is ``overdensity``
times of the cosmological critical density.
Parameters
----------
mass : float, `~numpy.ndarray`
Total mass of the cluster
Unit: [Msun]
overdensity : float
The times of density over the cosmological critical density,
e.g., 200, 500.
z : float, `~numpy.ndarray`, optional
Redshift
Default: 0.0 (i.e., present day)
Returns
-------
radius : float, `~numpy.ndarray`
Unit: [kpc]
"""
rho = COSMO.rho_crit(z) # [g/cm^3]
r = (3*mass*AUC.Msun2g / (4*np.pi * overdensity * rho))**(1/3) # [cm]
return r * AUC.cm2kpc # [kpc]
def radius_virial(mass, z=0.0):
"""
Calculate the virial radius of a cluster at a given redshift.
Parameters
----------
mass : float, `~numpy.ndarray`
Total (virial) mass of the cluster
Unit: [Msun]
z : float, `~numpy.ndarray`, optional
Redshift
Default: 0.0 (i.e., present day)
Returns
-------
R_vir : float, `~numpy.ndarray`
Virial radius of the cluster
Unit: [kpc]
"""
Dc = COSMO.overdensity_virial(z)
return radius_overdensity(mass, overdensity=Dc, z=z)
def radius_stripping(M_main, M_sub, z, f_rc=0.1, beta=0.8):
"""
Calculate the stripping radius of the in-falling sub-cluster, which
is determined by the equipartition between the static and ram pressure.
Reference: [cassano2005],Eqs.(11,12,13,14)
Returns
-------
rs : float
The stripping radius of the sub-cluster.
Unit: [kpc]
"""
r_vir = radius_virial(M_sub, z) # [kpc]
rho_main = density_number_thermal(M_main, z) * AC.mu*AC.u # [g/cm^3]
f_rho_sub = calc_gas_density_profile(M_sub, z, f_rc, beta) # [Msun/kpc^3]
vi = velocity_impact(M_main, M_sub, z) # [km/s]
kT_sub = kT_cluster(M_sub, z) # [keV]
rhs = rho_main * vi**2 * AC.mu*AC.u / kT_sub # [g/cm^3][g*km^2/s^2/keV]
rhs *= 1e3 * AUC.J2erg / AUC.keV2erg # [g/cm^3]
rhs *= AUC.g2Msun / AUC.cm2kpc**3 # [Msun/kpc^3]
try:
rs = optimize.brentq(lambda r: f_rho_sub(r) - rhs,
a=0.1*r_vir, b=r_vir, xtol=1e-1)
except ValueError:
rs = 2*f_rc * r_vir
return rs # [kpc]
def kT_virial(mass, z=0.0, radius=None):
"""
Calculate the virial temperature of a cluster.
Parameters
----------
mass : float
The virial mass of the cluster.
Unit: [Msun]
z : float, optional
The redshift of the cluster.
radius : float, optional
The virial radius of the cluster.
If no provided, then invoke the above ``radius_virial()``
function to calculate it.
Unit: [kpc]
Returns
-------
kT : float
The virial temperature of the cluster.
Unit: [keV]
Reference: Ref.[fujita2003],Eq.(48)
"""
if radius is None:
radius = radius_virial(mass=mass, z=z) # [kpc]
kT = AC.mu*AC.u * AC.G * mass*AUC.Msun2g / (2*radius*AUC.kpc2cm) # [erg]
kT *= AUC.erg2keV # [keV]
return kT
def kT_cluster(mass, z=0.0, radius=None, kT_out=0):
"""
Calculate the temperature of a cluster ICM.
NOTE
----
When a cluster forms, there are accretion shocks forms around
the cluster (near the virial radius) which can heat the gas,
therefore the ICM has a higher temperature than the virial
temperature, which can be estimated as:
kT_icm ~ kT_vir + 1.5 * kT_out
where kT_out the temperature of the outer gas surround the cluster,
which may be ~0.5-1.0 keV.
Reference: Ref.[fujita2003],Eq.(49)
Returns
-------
kT_icm : float
The temperature of the cluster ICM.
Unit: [keV]
"""
kT_vir = kT_virial(mass=mass, z=z, radius=radius)
kT_icm = kT_vir + 1.5*kT_out
return kT_icm
def density_number_thermal(mass, z=0.0):
"""
Calculate the number density of the ICM thermal plasma.
NOTE
----
This number density is independent of cluster (virial) mass,
but (mostly) increases with redshifts.
Parameters
----------
mass : float
Mass of the cluster
Unit: [Msun]
z : float, optional
Redshift
Returns
-------
n_th : float
Number density of the ICM thermal plasma
Unit: [cm^-3]
"""
N = mass * AUC.Msun2g * COSMO.baryon_fraction / (AC.mu * AC.u)
R_vir = radius_virial(mass, z) * AUC.kpc2cm # [cm]
volume = (4*np.pi / 3) * R_vir**3 # [cm^3]
n_th = N / volume # [cm^-3]
return n_th
def density_gas(mass, z=0.0):
"""
Calculate the mean gas density.
Unit: [g/cm^3]
"""
return density_number_thermal(mass, z) * AC.mu*AC.u # [g/cm^3]
def density_energy_thermal(mass, z=0.0, kT_out=0):
"""
Calculate the thermal energy density of the ICM.
Returns
-------
e_th : float
Energy density of the ICM
Unit: [erg/cm^3]
"""
n_th = density_number_thermal(mass=mass, z=z) # [cm^-3]
kT = kT_cluster(mass, z, kT_out=kT_out) * AUC.keV2erg # [erg]
e_th = (3.0/2) * kT * n_th
return e_th
def density_energy_electron(n_e, gamma):
"""
Calculate the energy density of relativistic electrons.
Parameters
----------
n_e : 1D float `~numpy.ndarray`
The number density of the electrons w.r.t. Lorentz factors
Unit: [cm^-3]
gamma : 1D float `~numpy.ndarray`
The Lorentz factors of electrons
Returns
-------
e_re : float
The energy density of the relativistic electrons.
Unit: [erg cm^-3]
"""
e_spec = n_e * gamma*AU.mec2
return integrate.simps(e_spec * gamma, np.log(gamma)) # in log grid
def density_number_electron(n_e, gamma):
"""
Calculate the electron number density of the given spectrum.
Unit: [cm^-3]
"""
return integrate.simps(n_e * gamma, np.log(gamma)) # in log grid
def magnetic_field(mass, z, eta_b, kT_out=0):
"""
Calculate the mean magnetic field strength within the ICM, which is
also assumed to be uniform, according to the assumed fraction of the
the magnetic field energy density w.r.t. the ICM thermal energy density.
NOTE
----
Magnetic field energy density: u_B = B^2 / (8π),
where "B" in units of [G], then "u_B" has unit of [erg/cm^3].
NOTE
----
Magnetic fields and cosmic rays are strongly coupled and exchange
energy. Therefore equipartition between them is assumed, i.e.,
X_cr (= ε_cr / ε_th) = η_b (= ε_b / ε_th)
Reference: [beck2005],App.A
Returns
-------
B : float
The mean magnetic field strength within the ICM.
Unit: [uG]
"""
e_th = density_energy_thermal(mass=mass, z=z, kT_out=kT_out)
B = np.sqrt(8*np.pi * eta_b * e_th) * 1e6 # [G] -> [uG]
return B
def plasma_beta(mass, z, eta_b, kT_out=0):
"""
Calculate the β value of the ICM, which is defined as:
β ≡ P_gas / u_B
where "P_gas" is the gas pressue: P_gas = n_th * kT;
"u_B" is the magnetic field energy density: u_B = B² / 8π .
Reference: Ref.[miniati2015],Eq.(2)
"""
n_th = density_number_thermal(mass, z) # [cm^-3]
kT = kT_cluster(mass, z, kT_out=kT_out) * AUC.keV2erg # [erg]
P = n_th * kT
B = magnetic_field(mass, z, eta_b=eta_b, kT_out=kT_out) * 1e-6 # [G]
beta = 8*np.pi * P / B**2
return beta
def speed_sound(kT):
"""
The adiabatic sound speed in cluster ICM.
Parameters
----------
kT : float
The cluster ICM temperature
Unit: [keV]
Returns
-------
cs : float
The speed of sound in cluster ICM.
Unit: [km/s]
Reference: Ref.[zhuravleva2014],Appendix(Methods)
"""
gamma = AC.gamma # gas adiabatic index
cs = np.sqrt(gamma * kT*AUC.keV2erg / (AC.mu * AC.u)) # [cm/s]
return cs * AUC.cm2km # [km/s]
def velocity_virial(mass, z=0.0):
"""
Calculate the virial velocity, i.e., circular velocity at the
virial radius.
Unit: [km/s]
"""
R_vir = radius_virial(mass, z) * AUC.kpc2cm # [cm]
vv = np.sqrt(AC.G * mass*AUC.Msun2g / R_vir) # [cm/s]
return vv / AUC.km2cm # [km/s]
def velocity_impact(M_main, M_sub, z=0.0):
"""
Estimate the relative impact velocity between the two merging
clusters when they are at a distance of the virial radius.
Parameters
----------
M_main, M_sub : float
Total (virial) masses of the main and sub clusters
Unit: [Msun]
z : float, optional
Redshift
Returns
-------
vi : float
Relative impact velocity
Unit: [km/s]
References
----------
Ref.[cassano2005],Eq.(9)
"""
eta_v = 4 * (1 + M_main/M_sub) ** (1/3)
R_vir = radius_virial(M_main, z) * AUC.kpc2cm # [cm]
vi = np.sqrt(2*AC.G * (1-1/eta_v) *
(M_main+M_sub)*AUC.Msun2g / R_vir) # [cm/s]
return vi / AUC.km2cm # [km/s]
def time_crossing(M_main, M_sub, z=0.0):
"""
Estimate the crossing time of the sub cluster during a merger.
NOTE: The crossing time is estimated to be τ ~ R_vir / v_impact.
Parameters
----------
M_main, M_sub : float
Total (virial) masses of the main and sub clusters
Unit: [Msun]
z : float, optional
Redshift
Returns
-------
time : float
Crossing time
Unit: [Gyr]
References
----------
Ref.[cassano2005],Sec.(4.1)
"""
R_vir = radius_virial(M_main, z) # [kpc]
vi = velocity_impact(M_main, M_sub, z) # [km/s]
uconv = AUC.kpc2km * AUC.s2Gyr # [s kpc/km] => [Gyr]
time = uconv * R_vir / vi # [Gyr]
return time
def draw_halo(radius, nr=2.0, felong=None, rotation=None):
"""
Draw the template image of one halo, which is used to simulate
the image at requested frequencies by adjusting the brightness
values.
NOTE
----
The exponential radial profile is adopted for radio halos:
I(r) = I0 * exp(-r/re)
with the e-folding radius ``re ~ R_halo / 3``.
Reference: Ref.[murgia2009],Eq.(1)
Parameters
----------
radius : float
The halo radius in number of pixels.
nr : float, optional
The times of ``radius`` to determine the size of the template
image.
Default: 2.0 (corresponding to 3*2=6 re)
felong : float, optional
The elongated fraction of the elliptical halo, which is
defined as the ratio of semi-minor axis to the semi-major axis.
Default: ``None`` (i.e., circular halo)
rotation : float, optional
The rotation angle of the elliptical halo.
Unit: [deg]
Default: ``None`` (i.e., no rotation)
Returns
-------
image : 2D `~numpy.ndarray`
2D array of the drawn halo template image.
The image is normalized to have *mean* value of 1.
"""
# Make halo radial brightness profile
re = radius / 3.0 # e-folding radius
# NOTE: Use ``ceil()`` here to make sure ``rprofile`` has length >= 2,
# therefore the interpolation in ``circle()`` runs well.
rmax = int(np.ceil(radius*nr))
r = np.arange(rmax+1)
rprofile = np.exp(-r/re)
image = circle(rprofile=rprofile)
if felong:
image = circle2ellipse(image, bfraction=felong, rotation=rotation)
# Normalized to have *mean* value of 1
image /= image.mean()
return image
|