aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/galactic/snr.py
blob: 7709a4f17139c91e69a91b463254a213c5814d6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) 2016 Weitian LI <liweitianux@live.com>
# MIT license

"""
Galactic supernova remnants (SNRs) emission simulations.
"""

import os
import logging
from datetime import datetime, timezone

import numpy as np
from astropy.io import fits
import astropy.units as au
import healpy as hp
import pandas as pd

from ..utils import write_fits_healpix


logger = logging.getLogger(__name__)


class SuperNovaRemnants:
    """
    Simulate the Galactic supernova remnants emission.

    ???

    Parameters
    ----------
    configs : ConfigManager object
        An `ConfigManager` object contains default and user configurations.
        For more details, see the example config specification.

    Attributes
    ----------
    ???

    References
    ----------
    .. [Green2014]
       Green, D. A.,
       "A catalogue of 294 Galactic supernova remnants",
       2014, Bulletin of the Astronomical Society of India, 42, 47-58,
       http://adsabs.harvard.edu/abs/2014BASI...42...47G

    .. [GreenSNRDataWeb]
       A Catalogue of Galactic Supernova Remnants
       http://www.mrao.cam.ac.uk/surveys/snrs/
    """
    def __init__(self, configs):
        self.configs = configs
        self._set_configs()

    def _set_configs(self):
        """Load the configs and set the corresponding class attributes."""
        comp = "galactic/snr"
        self.catalog_path = self.configs.get_path(comp+"/catalog")
        self.catalog_outfile = self.configs.get_path(comp+"/catalog_outfile")
        self.resolution = self.configs.getn(comp+"/resolution") * au.arcmin
        self.prefix = self.configs.getn(comp+"/prefix")
        self.save = self.configs.getn(comp+"/save")
        self.output_dir = self.configs.get_path(comp+"/output_dir")
        #
        self.filename_pattern = self.configs.getn("output/filename_pattern")
        self.use_float = self.configs.getn("output/use_float")
        self.clobber = self.configs.getn("output/clobber")
        self.nside = self.configs.getn("common/nside")
        self.freq_unit = au.Unit(self.configs.getn("frequency/unit"))
        #
        logger.info("Loaded and set up configurations")

    def _load_catalog(self):
        """Load the Galactic SNRs catalog data."""
        self.catalog = pd.read_csv(self.catalog_path)
        nrow, ncol = self.catalog.shape
        logger.info("Loaded SNRs catalog data from: {0}".format(
            self.catalog_path))
        logger.info("SNRs catalog data: {0} objects, {1} columns".format(
            nrow, ncol))
        # Set the units for columns
        self.units = {
            "glon": au.deg,
            "glat": au.deg,
            "size": au.arcmin,
            "flux": au.Jy,
        }
        # The flux densities are given at 1 GHz
        self.catalog_flux_freq = 1.0 * au.GHz

    def _save_catalog_inuse(self):
        """Save the effective/inuse SNRs catalog data to a CSV file.

        NOTE
        ----
        - Only the effective/inuse SNRs are saved (i.e., without the ones
          that are filtered out).
        - Also save the simulated rotation column.
        - The unnecessary columns are striped.
        """
        if self.catalog_outfile is None:
            logger.warning("Catalog output file not set, so do NOT save.")
            return
        # TODO/XXX
        pass

    def _filter_catalog(self):
        """Filter the catalog data to remove the objects with incomplete
        data.

        The following cases are filtered out:
        - Missing angular size
        - Missing flux density data
        - Missing spectral index value

        NOTE
        ----
        The objects with uncertain data are currently kept.
        """
        cond1 = pd.isnull(self.catalog["size_major"])
        cond2 = pd.isnull(self.catalog["size_minor"])
        cond3 = pd.isnull(self.catalog["flux"])
        cond4 = pd.isnull(self.catalog["specindex"])
        cond_keep = ~(cond1 | cond2 | cond3 | cond4)
        n_total = len(cond_keep)
        n_delete = cond_keep.sum()
        n_delete_p = n_delete / n_total * 100
        n_remain = n_total - n_delete
        self.catalog = self.catalog[cond_keep]
        # Reset index
        self.catalog.reset_index(inplace=True)
        logger.info("SNRs catalog: filtered out " +
                    "{0:d} ({1:.1f}) objects".format(n_delete, n_delete_p))
        logger.info("SNRs catalog: remaining {0} objects".format(n_remain))

    def _add_random_rotation(self):
        """Add random rotation angles for each SNR as column "rotation"
        within the `catalog` data frame.

        The rotation angles are uniformly distributed within [0, 360).

        The rotation happens on the spherical surface, i.e., not with respect
        to the line of sight, but to the Galactic frame coordinate axes.
        """
        num = len(self.catalog)
        angles = np.random.uniform(low=0.0, high=360.0, size=num)
        rotation = pd.Series(data=angles, name="rotation")
        self.catalog["rotation"] = rotation
        logger.info("Added random rotation angles as the 'rotation' column")

    def _calc_Tb(self, flux, specindex, frequency):
        """Calculate the brightness temperature at requested frequency
        by assuming a power-law spectral shape.

        Parameters
        ----------
        flux : float
            The flux density (unit: [ Jy ]) at the reference frequency
            (`self.catalog_flux_freq`).
        specindex : float
            The spectral index of the power-law spectrum
        frequency : float
            The frequency (unit: [ MHz ]) where the brightness temperature
            requested.

        Returns
        -------
        Tb : float
            Brightness temperature at the requested frequency, unit [ K ]

        NOTE
        ----
        The power-law spectral shape is assumed for *flux density* other
        than the *brightness temperature*.
        Therefore, the flux density at the requested frequency should first
        be calculated by extrapolating the spectrum, then convert the flux
        density to derive the brightness temperature.
        """
        pass

    def _simulate_frequency(self, frequency):
        """Simulate the Galactic SNRs emission map at the specified frequency.
        """
        pass

    def _make_filename(self, **kwargs):
        """Make the path of output file according to the filename pattern
        and output directory loaded from configurations.
        """
        data = {
            "prefix": self.prefix,
        }
        data.extend(kwargs)
        filename = self.filename_pattern.format(**data)
        filetype = self.configs.getn("output/filetype")
        if filetype == "fits":
            filename += ".fits"
        else:
            raise NotImplementedError("unsupported filetype: %s" % filetype)
        filepath = os.path.join(self.output_dir, filename)
        return filepath

    def _make_header(self):
        """Make the header with detail information (e.g., parameters and
        history) for the simulated products.
        """
        header = fits.Header()
        header["COMP"] = ("Galactic supernova remnants (SNRs)",
                          "Emission component")
        header["CREATOR"] = (__name__, "File creator")
        # TODO:
        history = []
        comments = []
        for hist in history:
            header.add_history(hist)
        for cmt in comments:
            header.add_comment(cmt)
        self.header = header
        logger.info("Created FITS header")

    def output(self, hpmap, frequency):
        """Write the simulated free-free map to disk with proper header
        keywords and history.
        """
        if not os.path.exists(self.output_dir):
            os.mkdir(self.output_dir)
            logger.info("Created output dir: {0}".format(self.output_dir))
        #
        filepath = self._make_filepath(frequency=frequency)
        if not hasattr(self, "header"):
            self._make_header()
        header = self.header.copy()
        header["FREQ"] = (frequency, "Frequency [ MHz ]")
        header["DATE"] = (
            datetime.now(timezone.utc).astimezone().isoformat(),
            "File creation date"
        )
        if self.use_float:
            hpmap = hpmap.astype(np.float32)
        write_fits_healpix(filepath, hpmap, header=header,
                           clobber=self.clobber)
        logger.info("Write simulated map to file: {0}".format(filepath))

    def simulate(self, frequencies):
        """Simulate the free-free map at the specified frequencies."""
        hpmaps = []
        for f in np.array(frequencies, ndmin=1):
            logger.info("Simulating free-free map at {0} ({1}) ...".format(
                f, self.freq_unit))
            hpmap_f = self._simulate_frequency(f)
            hpmaps.append(hpmap_f)
            if self.save:
                self.output(hpmap_f, f)
        return hpmaps