aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/utils/analyze.py
blob: e9ce262446db58c6dfba26ac240295c5b09eb551 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright (c) 2017,2019 Weitian LI <wt@liwt.net>
# MIT License

"""
Utilities to help analyze the simulation results.
"""

import logging

import numpy as np
from scipy import optimize


logger = logging.getLogger(__name__)


def inverse_cumsum(x):
    """
    Do cumulative sum reversely.

    Credit: https://stackoverflow.com/a/28617608/4856091
    """
    x = np.asarray(x)
    return x[::-1].cumsum()[::-1]


def countdist(x, nbin, log=True, xmin=None, xmax=None):
    """
    Calculate the counts distribution, i.e., a histogram.

    Parameters
    ----------
    x : list[float]
        Array of quantities of every object/source.
    nbin : int
        Number of bins to calculate the counts distribution.
    log : bool, optional
        Whether to take logarithm on the ``x`` quantities to determine
        the bin edges?
        Default: True
    xmin, xmax : float, optional
        The lower and upper boundaries within which to calculate the
        counts distribution.  They are default to the minimum and
        maximum of the given ``x``.

    Returns
    -------
    counts : 1D `~numpy.ndarray`
        The counts in each bin, of length ``nbin``.
    bins : 1D `~numpy.ndarray`
        The central positions of every bin, of length ``nbin``.
    binedges : 1D `~numpy.ndarray`
        The edge positions of every bin, of length ``nbin+1``.
    """
    x = np.asarray(x)
    if xmin is None:
        xmin = x.min()
    if xmax is None:
        xmax = x.max()
    x = x[(x >= xmin) & (x <= xmax)]

    if log is True:
        if xmin <= 0:
            raise ValueError("log=True but x have elements <= 0")
        x = np.log(x)
        xmin, xmax = np.log([xmin, xmax])

    binedges = np.linspace(xmin, xmax, num=nbin+1)
    bins = (binedges[1:] + binedges[:-1]) / 2
    counts, __ = np.histogram(x, bins=binedges)

    if log is True:
        bins = np.exp(bins)
        binedges = np.exp(binedges)

    return counts, bins, binedges


def countdist_integrated(x, nbin, log=True, xmin=None, xmax=None):
    """
    Calculate the integrated counts distribution (e.g., luminosity
    function, mass function), representing the counts with a greater
    value, e.g., N(>flux), N(>mass).
    """
    counts, bins, binedges = countdist(x=x, nbin=nbin, log=log,
                                       xmin=xmin, xmax=xmax)
    counts = inverse_cumsum(counts)
    return counts, bins, binedges


def loglinfit(x, y,
              xlim=(None, None), ylim=(None, None),
              coef0=(1, 1),
              **kwargs):
    """
    Fit the data points with a log-linear model: y = a * x^b

    Parameters
    ----------
    x, y : list[float]
        The data points.
    xlim, ylim : float tuple/list of length 2, optional
        The minimum/maximum limit of x/y for the fitting.
        Default: (None, None), i.e., use all the data.
    coef0 : float tuple/list of length 2, optional
        The initial values of the coefficients (a0, b0).
        Default: (1, 1)
    **kwargs :
        Extra parameters passed to ``scipy.optimize.least_squares()``.

    Returns
    -------
    coef : (a, b)
        The fitted coefficients.
    err : (a_err, b_err)
        The uncertainties of the coefficients.
    fun : function
        The function with fitted coefficients to calculate the fitted
        values: fun(x).
    """
    def _f_poly1(x, a, b):
        return a + b * x

    x = np.asarray(x)
    y = np.asarray(y)
    xmin, xmax = xlim
    ymin, ymax = ylim
    if xmin is None:
        xmin = np.min(x)
    if xmax is None:
        xmax = np.max(x)
    if ymin is None:
        ymin = np.min(y)
    if ymax is None:
        ymax = np.max(y)

    mask = (x >= xmin) & (x <= xmax) & (y >= ymin) & (y <= ymax)
    logx = np.log(x[mask])
    logy = np.log(y[mask])

    args = {
        "method": "trf",
        "loss": "soft_l1",
        "f_scale": np.mean(logy),
    }
    args.update(kwargs)
    p, pcov = optimize.curve_fit(_f_poly1, logx, logy, p0=coef0, **args)

    coef = (np.exp(p[0]), p[1])
    perr = np.sqrt(np.diag(pcov))
    err = (np.exp(perr[0]), perr[1])
    fun = lambda x: np.exp(_f_poly1(np.log(x), *p))  # noqa: E731

    return coef, err, fun