1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Utilities to help analyze the simulation results.
"""
import logging
import numpy as np
logger = logging.getLogger(__name__)
def inverse_cumsum(x):
"""
Do cumulative sum reversely.
Credit: https://stackoverflow.com/a/28617608/4856091
"""
x = np.asarray(x)
return x[::-1].cumsum()[::-1]
def countdist_integrated(x, nbin, log=True):
"""
Calculate the integrated counts distribution (i.e., luminosity
function), representing the counts (number of objects) with a
greater value.
Parameters
----------
x : list[float]
Array of quantities of every object/source.
nbin : int
Number of bins to calculate the counts distribution.
log : bool, optional
Whether to take logarithm on the ``x`` quantities to determine
the bin edges?
Default: True
Returns
-------
counts : 1D `~numpy.ndarray`
The integrated counts for each bin, of length ``nbin``.
bins : 1D `~numpy.ndarray`
The central positions of every bin, of length ``nbin``.
binedges : 1D `~numpy.ndarray`
The edge positions of every bin, of length ``nbin+1``.
"""
x = np.asarray(x)
if log is True:
x = np.log(x)
binedges = np.linspace(x.min(), x.max(), num=nbin+1)
bins = (binedges[1:] + binedges[:-1]) / 2
counts, __ = np.histogram(x, bins=binedges)
# Convert to the integrated counts distribution
counts = inverse_cumsum(counts)
if log is True:
bins = np.exp(bins)
binedges = np.exp(binedges)
return (counts, bins, binedges)
|