1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
# Copyright (c) 2017,2019 Weitian LI <wt@liwt.net>
# MIT License
"""
Utilities to help analyze the simulation results.
"""
import logging
import numpy as np
from scipy import optimize
logger = logging.getLogger(__name__)
def inverse_cumsum(x):
"""
Do cumulative sum reversely.
Credit: https://stackoverflow.com/a/28617608/4856091
"""
x = np.asarray(x)
return x[::-1].cumsum()[::-1]
def countdist(x, nbin, log=True, xmin=None, xmax=None):
"""
Calculate the counts distribution, i.e., a histogram.
Parameters
----------
x : list[float]
Array of quantities of every object/source.
nbin : int
Number of bins to calculate the counts distribution.
log : bool, optional
Whether to take logarithm on the ``x`` quantities to determine
the bin edges?
Default: True
xmin, xmax : float, optional
The lower and upper boundaries within which to calculate the
counts distribution. They are default to the minimum and
maximum of the given ``x``.
Returns
-------
counts : 1D `~numpy.ndarray`
The counts in each bin, of length ``nbin``.
bins : 1D `~numpy.ndarray`
The central positions of every bin, of length ``nbin``.
binedges : 1D `~numpy.ndarray`
The edge positions of every bin, of length ``nbin+1``.
"""
x = np.asarray(x)
if xmin is None:
xmin = x.min()
if xmax is None:
xmax = x.max()
x = x[(x >= xmin) & (x <= xmax)]
if log is True:
if xmin <= 0:
raise ValueError("log=True but x have elements <= 0")
x = np.log(x)
xmin, xmax = np.log([xmin, xmax])
binedges = np.linspace(xmin, xmax, num=nbin+1)
bins = (binedges[1:] + binedges[:-1]) / 2
counts, __ = np.histogram(x, bins=binedges)
if log is True:
bins = np.exp(bins)
binedges = np.exp(binedges)
return counts, bins, binedges
def countdist_integrated(x, nbin, log=True, xmin=None, xmax=None):
"""
Calculate the integrated counts distribution (e.g., luminosity
function, mass function), representing the counts with a greater
value, e.g., N(>flux), N(>mass).
"""
counts, bins, binedges = countdist(x=x, nbin=nbin, log=log,
xmin=xmin, xmax=xmax)
counts = inverse_cumsum(counts)
return counts, bins, binedges
def loglinfit(x, y, **kwargs):
"""
Fit the data points with a log-linear model: y = a * x^b
Parameters
----------
x, y : list[float]
The data points.
kwargs : dict
Extra parameters passed to ``scipy.optimize.least_squares()``.
Returns
-------
coef : (a, b)
The fitted coefficients.
err : (a_err, b_err)
The uncertainties of the coefficients.
fun : function
The function with fitted coefficients to calculate the fitted
values: fun(x).
"""
def _f_poly1(x, a, b):
return a + b * x
logx = np.log(x)
logy = np.log(y)
f_scale = np.mean(logy)
args = {
"method": "trf",
"loss": "soft_l1",
"f_scale": np.mean(logy),
}
args.update(kwargs)
p, pcov = optimize.curve_fit(_f_poly1, logx, logy, p0=(1, 1), **args)
coef = (np.exp(p[0]), p[1])
perr = np.sqrt(np.diag(pcov))
err = (np.exp(perr[0]), perr[1])
fun = lambda x: np.exp(_f_poly1(np.log(x), *p))
return coef, err, fun
|