1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
# Copyright (c) 2016-2018 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Utilities for conversion among common astronomical quantities.
"""
import numpy as np
from .units import (UnitConversions as AUC, Constants as AC)
from ..share import COSMO
def Sb_to_Tb(Sb, freq):
"""
Convert surface brightness to brightness temperature, using the
Rayleigh-Jeans law, in the Rayleigh-Jeans limit.
Tb = Sb * c^2 / (2 * k_B * nu^2)
where `Sb` is the surface brightness density measured at a certain
frequency, in units of [Jy/arcsec^2].
1 [Jy] = 1e-23 [erg/s/cm^2/Hz] = 1e-26 [W/m^2/Hz]
NOTE
----
It is very easy to use ``astropy.units`` for the conversion:
equiv = au.brightness_temperature(omega, freq)
Tb = Fnu.to(au.K, equivalencies=equiv)
WARNING:
Using `astropy.units` for the conversion may be much slower.
This can be used as a cross check for the calculation.
Parameters
----------
Sb : float
Input surface brightness
Unit: [Jy/arcsec^2]
freq : float
Frequency where the flux density measured
Unit: [MHz]
Returns
-------
Tb : float
Calculated brightness temperature
Unit: [K]
References
----------
- Brightness and Flux
http://www.cv.nrao.edu/course/astr534/Brightness.html
- Wikipedia: Brightness Temperature
https://en.wikipedia.org/wiki/Brightness_temperature
- NJIT: Physics 728: Introduction to Radio Astronomy: Lecture #1
https://web.njit.edu/~gary/728/Lecture1.html
- Astropy: Equivalencies: Brightness Temperature / Flux Density
http://docs.astropy.org/en/stable/units/equivalencies.html
"""
# NOTE: [rad] & [sr] are dimensionless
arcsec2 = AUC.arcsec2rad ** 2 # [sr]
Sb /= arcsec2 # [Jy/arcsec^2] -> [Jy/sr]
coef = 1e-35 # unit conversion coefficient
Tb = coef * (Sb * AC.c**2) / (2*AC.k_B * freq**2) # [K]
return Tb
def Fnu_to_Tb(Fnu, omega, freq):
"""
Convert flux density to brightness temperature, using the
Rayleigh-Jeans law, in the Rayleigh-Jeans limit.
Avoid using `astropy.units` to optimize the speed.
Parameters
----------
Fnu : float
Input flux density
Unit: [Jy] = 1e-23 [erg/s/cm^2/Hz] = 1e-26 [W/m^2/Hz]
omega : float
Source angular size/area
Unit: [arcsec^2]
freq : float
Frequency where the flux density measured
Unit: [MHz]
Returns
-------
Tb : float
Calculated brightness temperature
Unit: [K]
"""
Sb = Fnu / omega # [Jy/arcsec^2]
return Sb_to_Tb(Sb, freq)
def JyPerPix_to_K(freq, pixelsize):
"""
The factor that converts [Jy/pixel] to [K] (brightness temperature).
Parameters
----------
freq : float
The frequency where the flux density measured.
Unit: [Jy]
pixelsize : float
The pixel size.
Unit: [arcsec]
"""
factor = Fnu_to_Tb(Fnu=1.0, omega=pixelsize**2, freq=freq)
return factor
def flux_to_power(flux, z, index=1.0):
"""
Calculate the (spectral) power from the measured flux density at
the same frequency with K-correction taking into account, if the
spectral index is given.
Parameters
----------
flux : float
The measured flux density at a frequency.
Unit: [mJy]
z : float
The redshift to the source.
index : float, optional
The spectral index (α) of the source flux: S(ν) ∝ ν^(-α)
If given, the K-correction is taken into account.
Returns
-------
power : float
The calculated (spectral) power at the same frequency as
the flux density measured.
Unit: [W/Hz]
"""
flux *= 1e-29 # [mJy] -> [W/Hz/m^2]
DL = COSMO.DL(z) * AUC.Mpc2m # [m]
power = 4*np.pi * DL**2 * (1+z)**(index-1) * flux # [W/Hz]
return power
|