aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--methods/lbfgs/arithmetic_ansi.h133
-rw-r--r--methods/lbfgs/lbfgs.cpp1276
-rw-r--r--methods/lbfgs/lbfgs.h385
-rw-r--r--methods/lbfgs/lbfgs.hpp169
4 files changed, 1963 insertions, 0 deletions
diff --git a/methods/lbfgs/arithmetic_ansi.h b/methods/lbfgs/arithmetic_ansi.h
new file mode 100644
index 0000000..c58c98a
--- /dev/null
+++ b/methods/lbfgs/arithmetic_ansi.h
@@ -0,0 +1,133 @@
+/*
+ * ANSI C implementation of vector operations.
+ *
+ * Copyright (c) 2007-2010 Naoaki Okazaki
+ * All rights reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/* $Id: arithmetic_ansi.h 65 2010-01-29 12:19:16Z naoaki $ */
+
+#include <stdlib.h>
+#include <memory.h>
+
+#if LBFGS_FLOAT == 32 && LBFGS_IEEE_FLOAT
+#define fsigndiff(x, y) (((*(uint32_t*)(x)) ^ (*(uint32_t*)(y))) & 0x80000000U)
+#else
+#define fsigndiff(x, y) (*(x) * (*(y) / fabs(*(y))) < 0.)
+#endif/*LBFGS_IEEE_FLOAT*/
+
+inline static void* vecalloc(size_t size)
+{
+ void *memblock = malloc(size);
+ if (memblock) {
+ memset(memblock, 0, size);
+ }
+ return memblock;
+}
+
+inline static void vecfree(void *memblock)
+{
+ free(memblock);
+}
+
+inline static void vecset(lbfgsfloatval_t *x, const lbfgsfloatval_t c, const int n)
+{
+ int i;
+
+ for (i = 0;i < n;++i) {
+ x[i] = c;
+ }
+}
+
+inline static void veccpy(lbfgsfloatval_t *y, const lbfgsfloatval_t *x, const int n)
+{
+ int i;
+
+ for (i = 0;i < n;++i) {
+ y[i] = x[i];
+ }
+}
+
+inline static void vecncpy(lbfgsfloatval_t *y, const lbfgsfloatval_t *x, const int n)
+{
+ int i;
+
+ for (i = 0;i < n;++i) {
+ y[i] = -x[i];
+ }
+}
+
+inline static void vecadd(lbfgsfloatval_t *y, const lbfgsfloatval_t *x, const lbfgsfloatval_t c, const int n)
+{
+ int i;
+
+ for (i = 0;i < n;++i) {
+ y[i] += c * x[i];
+ }
+}
+
+inline static void vecdiff(lbfgsfloatval_t *z, const lbfgsfloatval_t *x, const lbfgsfloatval_t *y, const int n)
+{
+ int i;
+
+ for (i = 0;i < n;++i) {
+ z[i] = x[i] - y[i];
+ }
+}
+
+inline static void vecscale(lbfgsfloatval_t *y, const lbfgsfloatval_t c, const int n)
+{
+ int i;
+
+ for (i = 0;i < n;++i) {
+ y[i] *= c;
+ }
+}
+
+inline static void vecmul(lbfgsfloatval_t *y, const lbfgsfloatval_t *x, const int n)
+{
+ int i;
+
+ for (i = 0;i < n;++i) {
+ y[i] *= x[i];
+ }
+}
+
+inline static void vecdot(lbfgsfloatval_t* s, const lbfgsfloatval_t *x, const lbfgsfloatval_t *y, const int n)
+{
+ int i;
+ *s = 0.;
+ for (i = 0;i < n;++i) {
+ *s += x[i] * y[i];
+ }
+}
+
+inline static void vec2norm(lbfgsfloatval_t* s, const lbfgsfloatval_t *x, const int n)
+{
+ vecdot(s, x, x, n);
+ *s = (lbfgsfloatval_t)sqrt(*s);
+}
+
+inline static void vec2norminv(lbfgsfloatval_t* s, const lbfgsfloatval_t *x, const int n)
+{
+ vec2norm(s, x, n);
+ *s = (lbfgsfloatval_t)(1.0 / *s);
+}
diff --git a/methods/lbfgs/lbfgs.cpp b/methods/lbfgs/lbfgs.cpp
new file mode 100644
index 0000000..d7b5494
--- /dev/null
+++ b/methods/lbfgs/lbfgs.cpp
@@ -0,0 +1,1276 @@
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include "arithmetic_ansi.h"
+
+
+//#define min2(a, b) ((a) <= (b) ? (a) : (b))
+template<typename T>
+static T min2(const T& a,const T& b)
+{
+ return (a) <= (b) ? (a) : (b);
+}
+//#define max2(a, b) ((a) >= (b) ? (a) : (b))
+template<typename T>
+static T max2(const T& a,const T& b)
+{
+ return (a) >= (b) ? (a) : (b);
+}
+//#define max3(a, b, c) max2(max2((a), (b)), (c));
+template<typename T>
+static T max3(const T& a,const T& b,const T& c)
+{
+ return max2(max2((a), (b)), (c));
+}
+
+
+struct tag_callback_data {
+ int n;
+ void *instance;
+ lbfgs_evaluate_t proc_evaluate;
+ lbfgs_progress_t proc_progress;
+};
+typedef struct tag_callback_data callback_data_t;
+
+struct tag_iteration_data {
+ lbfgsfloatval_t alpha;
+ lbfgsfloatval_t *s; /* [n] */
+ lbfgsfloatval_t *y; /* [n] */
+ lbfgsfloatval_t ys; /* vecdot(y, s) */
+};
+typedef struct tag_iteration_data iteration_data_t;
+
+static const lbfgs_parameter_t _defparam = {
+ 6, 1e-5, 0, 1e-5,
+ 0, LBFGS_LINESEARCH_DEFAULT, 40,
+ 1e-20, 1e20, 1e-4, 0.9, 0.9, 1.0e-16,
+ 0.0, 0, -1,
+};
+
+/* Forward function declarations. */
+
+typedef int (*line_search_proc)(
+ int n,
+ lbfgsfloatval_t *x,
+ lbfgsfloatval_t *f,
+ lbfgsfloatval_t *g,
+ lbfgsfloatval_t *s,
+ lbfgsfloatval_t *stp,
+ const lbfgsfloatval_t* xp,
+ const lbfgsfloatval_t* gp,
+ lbfgsfloatval_t *wa,
+ callback_data_t *cd,
+ const lbfgs_parameter_t *param
+ );
+
+static int line_search_backtracking(
+ int n,
+ lbfgsfloatval_t *x,
+ lbfgsfloatval_t *f,
+ lbfgsfloatval_t *g,
+ lbfgsfloatval_t *s,
+ lbfgsfloatval_t *stp,
+ const lbfgsfloatval_t* xp,
+ const lbfgsfloatval_t* gp,
+ lbfgsfloatval_t *wa,
+ callback_data_t *cd,
+ const lbfgs_parameter_t *param
+ );
+
+static int line_search_backtracking_owlqn(
+ int n,
+ lbfgsfloatval_t *x,
+ lbfgsfloatval_t *f,
+ lbfgsfloatval_t *g,
+ lbfgsfloatval_t *s,
+ lbfgsfloatval_t *stp,
+ const lbfgsfloatval_t* xp,
+ const lbfgsfloatval_t* gp,
+ lbfgsfloatval_t *wp,
+ callback_data_t *cd,
+ const lbfgs_parameter_t *param
+ );
+
+static int line_search_morethuente(
+ int n,
+ lbfgsfloatval_t *x,
+ lbfgsfloatval_t *f,
+ lbfgsfloatval_t *g,
+ lbfgsfloatval_t *s,
+ lbfgsfloatval_t *stp,
+ const lbfgsfloatval_t* xp,
+ const lbfgsfloatval_t* gp,
+ lbfgsfloatval_t *wa,
+ callback_data_t *cd,
+ const lbfgs_parameter_t *param
+ );
+
+static int update_trial_interval(
+ lbfgsfloatval_t *x,
+ lbfgsfloatval_t *fx,
+ lbfgsfloatval_t *dx,
+ lbfgsfloatval_t *y,
+ lbfgsfloatval_t *fy,
+ lbfgsfloatval_t *dy,
+ lbfgsfloatval_t *t,
+ lbfgsfloatval_t *ft,
+ lbfgsfloatval_t *dt,
+ const lbfgsfloatval_t tmin,
+ const lbfgsfloatval_t tmax,
+ int *brackt
+ );
+
+static lbfgsfloatval_t owlqn_x1norm(
+ const lbfgsfloatval_t* x,
+ const int start,
+ const int n
+ );
+
+static void owlqn_pseudo_gradient(
+ lbfgsfloatval_t* pg,
+ const lbfgsfloatval_t* x,
+ const lbfgsfloatval_t* g,
+ const int n,
+ const lbfgsfloatval_t c,
+ const int start,
+ const int end
+ );
+
+static void owlqn_project(
+ lbfgsfloatval_t* d,
+ const lbfgsfloatval_t* sign,
+ const int start,
+ const int end
+ );
+
+
+static lbfgsfloatval_t* lbfgs_malloc(int n)
+{
+ return (lbfgsfloatval_t*)vecalloc(sizeof(lbfgsfloatval_t) * n);
+}
+
+static void lbfgs_free(lbfgsfloatval_t *x)
+{
+ vecfree(x);
+}
+
+static void lbfgs_parameter_init(lbfgs_parameter_t *param)
+{
+ memcpy(param, &_defparam, sizeof(*param));
+}
+
+static int lbfgs(
+ int n,
+ lbfgsfloatval_t *x,
+ lbfgsfloatval_t *ptr_fx,
+ lbfgs_evaluate_t proc_evaluate,
+ lbfgs_progress_t proc_progress,
+ void *instance,
+ lbfgs_parameter_t *_param
+ )
+{
+ int ret;
+ int i, j, k, ls, end, bound;
+ lbfgsfloatval_t step;
+
+ /* Constant parameters and their default values. */
+ lbfgs_parameter_t param = (_param != NULL) ? (*_param) : _defparam;
+ const int m = param.m;
+
+ lbfgsfloatval_t *xp = NULL;
+ lbfgsfloatval_t *g = NULL, *gp = NULL, *pg = NULL;
+ lbfgsfloatval_t *d = NULL, *w = NULL, *pf = NULL;
+ iteration_data_t *lm = NULL, *it = NULL;
+ lbfgsfloatval_t ys, yy;
+ lbfgsfloatval_t xnorm, gnorm, beta;
+ lbfgsfloatval_t fx = 0.;
+ lbfgsfloatval_t rate = 0.;
+ line_search_proc linesearch = line_search_morethuente;
+
+ /* Construct a callback data. */
+ callback_data_t cd;
+ cd.n = n;
+ cd.instance = instance;
+ cd.proc_evaluate = proc_evaluate;
+ cd.proc_progress = proc_progress;
+
+ /* Check the input parameters for errors. */
+ if (n <= 0) {
+ return LBFGSERR_INVALID_N;
+ }
+
+ if (param.epsilon < 0.) {
+ return LBFGSERR_INVALID_EPSILON;
+ }
+ if (param.past < 0) {
+ return LBFGSERR_INVALID_TESTPERIOD;
+ }
+ if (param.delta < 0.) {
+ return LBFGSERR_INVALID_DELTA;
+ }
+ if (param.min_step < 0.) {
+ return LBFGSERR_INVALID_MINSTEP;
+ }
+ if (param.max_step < param.min_step) {
+ return LBFGSERR_INVALID_MAXSTEP;
+ }
+ if (param.ftol < 0.) {
+ return LBFGSERR_INVALID_FTOL;
+ }
+ if (param.linesearch == LBFGS_LINESEARCH_BACKTRACKING_WOLFE ||
+ param.linesearch == LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
+ if (param.wolfe <= param.ftol || 1. <= param.wolfe) {
+ return LBFGSERR_INVALID_WOLFE;
+ }
+ }
+ if (param.gtol < 0.) {
+ return LBFGSERR_INVALID_GTOL;
+ }
+ if (param.xtol < 0.) {
+ return LBFGSERR_INVALID_XTOL;
+ }
+ if (param.max_linesearch <= 0) {
+ return LBFGSERR_INVALID_MAXLINESEARCH;
+ }
+ if (param.orthantwise_c < 0.) {
+ return LBFGSERR_INVALID_ORTHANTWISE;
+ }
+ if (param.orthantwise_start < 0 || n < param.orthantwise_start) {
+ return LBFGSERR_INVALID_ORTHANTWISE_START;
+ }
+ if (param.orthantwise_end < 0) {
+ param.orthantwise_end = n;
+ }
+ if (n < param.orthantwise_end) {
+ return LBFGSERR_INVALID_ORTHANTWISE_END;
+ }
+ if (param.orthantwise_c != 0.) {
+ switch (param.linesearch) {
+ case LBFGS_LINESEARCH_BACKTRACKING:
+ linesearch = line_search_backtracking_owlqn;
+ break;
+ default:
+ /* Only the backtracking method is available. */
+ return LBFGSERR_INVALID_LINESEARCH;
+ }
+ } else {
+ switch (param.linesearch) {
+ case LBFGS_LINESEARCH_MORETHUENTE:
+ linesearch = line_search_morethuente;
+ break;
+ case LBFGS_LINESEARCH_BACKTRACKING_ARMIJO:
+ case LBFGS_LINESEARCH_BACKTRACKING_WOLFE:
+ case LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE:
+ linesearch = line_search_backtracking;
+ break;
+ default:
+ return LBFGSERR_INVALID_LINESEARCH;
+ }
+ }
+
+ /* Allocate working space. */
+ xp = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
+ g = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
+ gp = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
+ d = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
+ w = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
+ if (xp == NULL || g == NULL || gp == NULL || d == NULL || w == NULL) {
+ ret = LBFGSERR_OUTOFMEMORY;
+ goto lbfgs_exit;
+ }
+
+ if (param.orthantwise_c != 0.) {
+ /* Allocate working space for OW-LQN. */
+ pg = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
+ if (pg == NULL) {
+ ret = LBFGSERR_OUTOFMEMORY;
+ goto lbfgs_exit;
+ }
+ }
+
+ /* Allocate limited memory storage. */
+ lm = (iteration_data_t*)vecalloc(m * sizeof(iteration_data_t));
+ if (lm == NULL) {
+ ret = LBFGSERR_OUTOFMEMORY;
+ goto lbfgs_exit;
+ }
+
+ /* Initialize the limited memory. */
+ for (i = 0;i < m;++i) {
+ it = &lm[i];
+ it->alpha = 0;
+ it->ys = 0;
+ it->s = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
+ it->y = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
+ if (it->s == NULL || it->y == NULL) {
+ ret = LBFGSERR_OUTOFMEMORY;
+ goto lbfgs_exit;
+ }
+ }
+
+ /* Allocate an array for storing previous values of the objective function. */
+ if (0 < param.past) {
+ pf = (lbfgsfloatval_t*)vecalloc(param.past * sizeof(lbfgsfloatval_t));
+ }
+
+ /* Evaluate the function value and its gradient. */
+ fx = cd.proc_evaluate(cd.instance, x, g, cd.n, 0);
+ if (0. != param.orthantwise_c) {
+ /* Compute the L1 norm of the variable and add it to the object value. */
+ xnorm = owlqn_x1norm(x, param.orthantwise_start, param.orthantwise_end);
+ fx += xnorm * param.orthantwise_c;
+ owlqn_pseudo_gradient(
+ pg, x, g, n,
+ param.orthantwise_c, param.orthantwise_start, param.orthantwise_end
+ );
+ }
+
+ /* Store the initial value of the objective function. */
+ if (pf != NULL) {
+ pf[0] = fx;
+ }
+
+ /*
+ Compute the direction;
+ we assume the initial hessian matrix H_0 as the identity matrix.
+ */
+ if (param.orthantwise_c == 0.) {
+ vecncpy(d, g, n);
+ } else {
+ vecncpy(d, pg, n);
+ }
+
+ /*
+ Make sure that the initial variables are not a minimizer.
+ */
+ vec2norm(&xnorm, x, n);
+ if (param.orthantwise_c == 0.) {
+ vec2norm(&gnorm, g, n);
+ } else {
+ vec2norm(&gnorm, pg, n);
+ }
+ if (xnorm < 1.0) xnorm = 1.0;
+ if (gnorm / xnorm <= param.epsilon) {
+ ret = LBFGS_ALREADY_MINIMIZED;
+ goto lbfgs_exit;
+ }
+
+ /* Compute the initial step:
+ step = 1.0 / sqrt(vecdot(d, d, n))
+ */
+ vec2norminv(&step, d, n);
+
+ k = 1;
+ end = 0;
+ for (;;) {
+ /* Store the current position and gradient vectors. */
+ veccpy(xp, x, n);
+ veccpy(gp, g, n);
+
+ /* Search for an optimal step. */
+ if (param.orthantwise_c == 0.) {
+ ls = linesearch(n, x, &fx, g, d, &step, xp, gp, w, &cd, &param);
+ } else {
+ ls = linesearch(n, x, &fx, g, d, &step, xp, pg, w, &cd, &param);
+ owlqn_pseudo_gradient(
+ pg, x, g, n,
+ param.orthantwise_c, param.orthantwise_start, param.orthantwise_end
+ );
+ }
+ if (ls < 0) {
+ /* Revert to the previous point. */
+ veccpy(x, xp, n);
+ veccpy(g, gp, n);
+ ret = ls;
+ goto lbfgs_exit;
+ }
+
+ /* Compute x and g norms. */
+ vec2norm(&xnorm, x, n);
+ if (param.orthantwise_c == 0.) {
+ vec2norm(&gnorm, g, n);
+ } else {
+ vec2norm(&gnorm, pg, n);
+ }
+
+ /* Report the progress. */
+ if (cd.proc_progress) {
+ if (ret = cd.proc_progress(cd.instance, x, g, fx, xnorm, gnorm, step, cd.n, k, ls)) {
+ goto lbfgs_exit;
+ }
+ }
+
+ /*
+ Convergence test.
+ The criterion is given by the following formula:
+ |g(x)| / \max(1, |x|) < \epsilon
+ */
+ if (xnorm < 1.0) xnorm = 1.0;
+ if (gnorm / xnorm <= param.epsilon) {
+ /* Convergence. */
+ ret = LBFGS_SUCCESS;
+ break;
+ }
+
+ /*
+ Test for stopping criterion.
+ The criterion is given by the following formula:
+ (f(past_x) - f(x)) / f(x) < \delta
+ */
+ if (pf != NULL) {
+ /* We don't test the stopping criterion while k < past. */
+ if (param.past <= k) {
+ /* Compute the relative improvement from the past. */
+ rate = (pf[k % param.past] - fx) / fx;
+
+ /* The stopping criterion. */
+ if (rate < param.delta) {
+ ret = LBFGS_STOP;
+ break;
+ }
+ }
+
+ /* Store the current value of the objective function. */
+ pf[k % param.past] = fx;
+ }
+
+ if (param.max_iterations != 0 && param.max_iterations < k+1) {
+ /* Maximum number of iterations. */
+ ret = LBFGSERR_MAXIMUMITERATION;
+ break;
+ }
+
+ /*
+ Update vectors s and y:
+ s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
+ y_{k+1} = g_{k+1} - g_{k}.
+ */
+ it = &lm[end];
+ vecdiff(it->s, x, xp, n);
+ vecdiff(it->y, g, gp, n);
+
+ /*
+ Compute scalars ys and yy:
+ ys = y^t \cdot s = 1 / \rho.
+ yy = y^t \cdot y.
+ Notice that yy is used for scaling the hessian matrix H_0 (Cholesky factor).
+ */
+ vecdot(&ys, it->y, it->s, n);
+ vecdot(&yy, it->y, it->y, n);
+ it->ys = ys;
+
+ /*
+ Recursive formula to compute dir = -(H \cdot g).
+ This is described in page 779 of:
+ Jorge Nocedal.
+ Updating Quasi-Newton Matrices with Limited Storage.
+ Mathematics of Computation, Vol. 35, No. 151,
+ pp. 773--782, 1980.
+ */
+ bound = (m <= k) ? m : k;
+ ++k;
+ end = (end + 1) % m;
+
+ /* Compute the steepest direction. */
+ if (param.orthantwise_c == 0.) {
+ /* Compute the negative of gradients. */
+ vecncpy(d, g, n);
+ } else {
+ vecncpy(d, pg, n);
+ }
+
+ j = end;
+ for (i = 0;i < bound;++i) {
+ j = (j + m - 1) % m; /* if (--j == -1) j = m-1; */
+ it = &lm[j];
+ /* \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}. */
+ vecdot(&it->alpha, it->s, d, n);
+ it->alpha /= it->ys;
+ /* q_{i} = q_{i+1} - \alpha_{i} y_{i}. */
+ vecadd(d, it->y, -it->alpha, n);
+ }
+
+ vecscale(d, ys / yy, n);
+
+ for (i = 0;i < bound;++i) {
+ it = &lm[j];
+ /* \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}. */
+ vecdot(&beta, it->y, d, n);
+ beta /= it->ys;
+ /* \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}. */
+ vecadd(d, it->s, it->alpha - beta, n);
+ j = (j + 1) % m; /* if (++j == m) j = 0; */
+ }
+
+ /*
+ Constrain the search direction for orthant-wise updates.
+ */
+ if (param.orthantwise_c != 0.) {
+ for (i = param.orthantwise_start;i < param.orthantwise_end;++i) {
+ if (d[i] * pg[i] >= 0) {
+ d[i] = 0;
+ }
+ }
+ }
+
+ /*
+ Now the search direction d is ready. We try step = 1 first.
+ */
+ step = 1.0;
+ }
+
+ lbfgs_exit:
+ /* Return the final value of the objective function. */
+ if (ptr_fx != NULL) {
+ *ptr_fx = fx;
+ }
+
+ vecfree(pf);
+
+ /* Free memory blocks used by this function. */
+ if (lm != NULL) {
+ for (i = 0;i < m;++i) {
+ vecfree(lm[i].s);
+ vecfree(lm[i].y);
+ }
+ vecfree(lm);
+ }
+ vecfree(pg);
+ vecfree(w);
+ vecfree(d);
+ vecfree(gp);
+ vecfree(g);
+ vecfree(xp);
+
+ return ret;
+}
+
+
+
+static int line_search_backtracking(
+ int n,
+ lbfgsfloatval_t *x,
+ lbfgsfloatval_t *f,
+ lbfgsfloatval_t *g,
+ lbfgsfloatval_t *s,
+ lbfgsfloatval_t *stp,
+ const lbfgsfloatval_t* xp,
+ const lbfgsfloatval_t* gp,
+ lbfgsfloatval_t *wp,
+ callback_data_t *cd,
+ const lbfgs_parameter_t *param
+ )
+{
+ int ret = 0, count = 0;
+ lbfgsfloatval_t width, dg, norm = 0.;
+ lbfgsfloatval_t finit, dginit = 0., dgtest;
+ const lbfgsfloatval_t dec = 0.5, inc = 2.1;
+
+ /* Check the input parameters for errors. */
+ if (*stp <= 0.) {
+ return LBFGSERR_INVALIDPARAMETERS;
+ }
+
+ /* Compute the initial gradient in the search direction. */
+ vecdot(&dginit, g, s, n);
+
+ /* Make sure that s points to a descent direction. */
+ if (0 < dginit) {
+ return LBFGSERR_INCREASEGRADIENT;
+ }
+
+ /* The initial value of the objective function. */
+ finit = *f;
+ dgtest = param->ftol * dginit;
+
+ for (;;) {
+ veccpy(x, xp, n);
+ vecadd(x, s, *stp, n);
+
+ /* Evaluate the function and gradient values. */
+ *f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);
+
+ ++count;
+
+ if (*f > finit + *stp * dgtest) {
+ width = dec;
+ } else {
+ /* The sufficient decrease condition (Armijo condition). */
+ if (param->linesearch == LBFGS_LINESEARCH_BACKTRACKING_ARMIJO) {
+ /* Exit with the Armijo condition. */
+ return count;
+ }
+
+ /* Check the Wolfe condition. */
+ vecdot(&dg, g, s, n);
+ if (dg < param->wolfe * dginit) {
+ width = inc;
+ } else {
+ if(param->linesearch == LBFGS_LINESEARCH_BACKTRACKING_WOLFE) {
+ /* Exit with the regular Wolfe condition. */
+ return count;
+ }
+
+ /* Check the strong Wolfe condition. */
+ if(dg > -param->wolfe * dginit) {
+ width = dec;
+ } else {
+ /* Exit with the strong Wolfe condition. */
+ return count;
+ }
+ }
+ }
+
+ if (*stp < param->min_step) {
+ /* The step is the minimum value. */
+ return LBFGSERR_MINIMUMSTEP;
+ }
+ if (*stp > param->max_step) {
+ /* The step is the maximum value. */
+ return LBFGSERR_MAXIMUMSTEP;
+ }
+ if (param->max_linesearch <= count) {
+ /* Maximum number of iteration. */
+ return LBFGSERR_MAXIMUMLINESEARCH;
+ }
+
+ (*stp) *= width;
+ }
+}
+
+
+
+static int line_search_backtracking_owlqn(
+ int n,
+ lbfgsfloatval_t *x,
+ lbfgsfloatval_t *f,
+ lbfgsfloatval_t *g,
+ lbfgsfloatval_t *s,
+ lbfgsfloatval_t *stp,
+ const lbfgsfloatval_t* xp,
+ const lbfgsfloatval_t* gp,
+ lbfgsfloatval_t *wp,
+ callback_data_t *cd,
+ const lbfgs_parameter_t *param
+ )
+{
+ int i, ret = 0, count = 0;
+ lbfgsfloatval_t width = 0.5, norm = 0.;
+ lbfgsfloatval_t finit = *f, dgtest;
+
+ /* Check the input parameters for errors. */
+ if (*stp <= 0.) {
+ return LBFGSERR_INVALIDPARAMETERS;
+ }
+
+ /* Choose the orthant for the new point. */
+ for (i = 0;i < n;++i) {
+ wp[i] = (xp[i] == 0.) ? -gp[i] : xp[i];
+ }
+
+ for (;;) {
+ /* Update the current point. */
+ veccpy(x, xp, n);
+ vecadd(x, s, *stp, n);
+
+ /* The current point is projected onto the orthant. */
+ owlqn_project(x, wp, param->orthantwise_start, param->orthantwise_end);
+
+ /* Evaluate the function and gradient values. */
+ *f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);
+
+ /* Compute the L1 norm of the variables and add it to the object value. */
+ norm = owlqn_x1norm(x, param->orthantwise_start, param->orthantwise_end);
+ *f += norm * param->orthantwise_c;
+
+ ++count;
+
+ dgtest = 0.;
+ for (i = 0;i < n;++i) {
+ dgtest += (x[i] - xp[i]) * gp[i];
+ }
+
+ if (*f <= finit + param->ftol * dgtest) {
+ /* The sufficient decrease condition. */
+ return count;
+ }
+
+ if (*stp < param->min_step) {
+ /* The step is the minimum value. */
+ return LBFGSERR_MINIMUMSTEP;
+ }
+ if (*stp > param->max_step) {
+ /* The step is the maximum value. */
+ return LBFGSERR_MAXIMUMSTEP;
+ }
+ if (param->max_linesearch <= count) {
+ /* Maximum number of iteration. */
+ return LBFGSERR_MAXIMUMLINESEARCH;
+ }
+
+ (*stp) *= width;
+ }
+}
+
+
+
+static int line_search_morethuente(
+ int n,
+ lbfgsfloatval_t *x,
+ lbfgsfloatval_t *f,
+ lbfgsfloatval_t *g,
+ lbfgsfloatval_t *s,
+ lbfgsfloatval_t *stp,
+ const lbfgsfloatval_t* xp,
+ const lbfgsfloatval_t* gp,
+ lbfgsfloatval_t *wa,
+ callback_data_t *cd,
+ const lbfgs_parameter_t *param
+ )
+{
+ int count = 0;
+ int brackt, stage1, uinfo = 0;
+ lbfgsfloatval_t dg;
+ lbfgsfloatval_t stx, fx, dgx;
+ lbfgsfloatval_t sty, fy, dgy;
+ lbfgsfloatval_t fxm, dgxm, fym, dgym, fm, dgm;
+ lbfgsfloatval_t finit, ftest1, dginit, dgtest;
+ lbfgsfloatval_t width, prev_width;
+ lbfgsfloatval_t stmin, stmax;
+
+ /* Check the input parameters for errors. */
+ if (*stp <= 0.) {
+ return LBFGSERR_INVALIDPARAMETERS;
+ }
+
+ /* Compute the initial gradient in the search direction. */
+ vecdot(&dginit, g, s, n);
+
+ /* Make sure that s points to a descent direction. */
+ if (0 < dginit) {
+ return LBFGSERR_INCREASEGRADIENT;
+ }
+
+ /* Initialize local variables. */
+ brackt = 0;
+ stage1 = 1;
+ finit = *f;
+ dgtest = param->ftol * dginit;
+ width = param->max_step - param->min_step;
+ prev_width = 2.0 * width;
+
+ /*
+ The variables stx, fx, dgx contain the values of the step,
+ function, and directional derivative at the best step.
+ The variables sty, fy, dgy contain the value of the step,
+ function, and derivative at the other endpoint of
+ the interval of uncertainty.
+ The variables stp, f, dg contain the values of the step,
+ function, and derivative at the current step.
+ */
+ stx = sty = 0.;
+ fx = fy = finit;
+ dgx = dgy = dginit;
+
+ for (;;) {
+ /*
+ Set the minimum and maximum steps to correspond to the
+ present interval of uncertainty.
+ */
+ if (brackt) {
+ stmin = min2(stx, sty);
+ stmax = max2(stx, sty);
+ } else {
+ stmin = stx;
+ stmax = *stp + 4.0 * (*stp - stx);
+ }
+
+ /* Clip the step in the range of [stpmin, stpmax]. */
+ if (*stp < param->min_step) *stp = param->min_step;
+ if (param->max_step < *stp) *stp = param->max_step;
+
+ /*
+ If an unusual termination is to occur then let
+ stp be the lowest point obtained so far.
+ */
+ if ((brackt && ((*stp <= stmin || stmax <= *stp) || param->max_linesearch <= count + 1 || uinfo != 0)) || (brackt && (stmax - stmin <= param->xtol * stmax))) {
+ *stp = stx;
+ }
+
+ /*
+ Compute the current value of x:
+ x <- x + (*stp) * s.
+ */
+ veccpy(x, xp, n);
+ vecadd(x, s, *stp, n);
+
+ /* Evaluate the function and gradient values. */
+ *f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);
+ vecdot(&dg, g, s, n);
+
+ ftest1 = finit + *stp * dgtest;
+ ++count;
+
+ /* Test for errors and convergence. */
+ if (brackt && ((*stp <= stmin || stmax <= *stp) || uinfo != 0)) {
+ /* Rounding errors prevent further progress. */
+ return LBFGSERR_ROUNDING_ERROR;
+ }
+ if (*stp == param->max_step && *f <= ftest1 && dg <= dgtest) {
+ /* The step is the maximum value. */
+ return LBFGSERR_MAXIMUMSTEP;
+ }
+ if (*stp == param->min_step && (ftest1 < *f || dgtest <= dg)) {
+ /* The step is the minimum value. */
+ return LBFGSERR_MINIMUMSTEP;
+ }
+ if (brackt && (stmax - stmin) <= param->xtol * stmax) {
+ /* Relative width of the interval of uncertainty is at most xtol. */
+ return LBFGSERR_WIDTHTOOSMALL;
+ }
+ if (param->max_linesearch <= count) {
+ /* Maximum number of iteration. */
+ return LBFGSERR_MAXIMUMLINESEARCH;
+ }
+ if (*f <= ftest1 && fabs(dg) <= param->gtol * (-dginit)) {
+ /* The sufficient decrease condition and the directional derivative condition hold. */
+ return count;
+ }
+
+ /*
+ In the first stage we seek a step for which the modified
+ function has a nonpositive value and nonnegative derivative.
+ */
+ if (stage1 && *f <= ftest1 && min2(param->ftol, param->gtol) * dginit <= dg) {
+ stage1 = 0;
+ }
+
+ /*
+ A modified function is used to predict the step only if
+ we have not obtained a step for which the modified
+ function has a nonpositive function value and nonnegative
+ derivative, and if a lower function value has been
+ obtained but the decrease is not sufficient.
+ */
+ if (stage1 && ftest1 < *f && *f <= fx) {
+ /* Define the modified function and derivative values. */
+ fm = *f - *stp * dgtest;
+ fxm = fx - stx * dgtest;
+ fym = fy - sty * dgtest;
+ dgm = dg - dgtest;
+ dgxm = dgx - dgtest;
+ dgym = dgy - dgtest;
+
+ /*
+ Call update_trial_interval() to update the interval of
+ uncertainty and to compute the new step.
+ */
+ uinfo = update_trial_interval(
+ &stx, &fxm, &dgxm,
+ &sty, &fym, &dgym,
+ stp, &fm, &dgm,
+ stmin, stmax, &brackt
+ );
+
+ /* Reset the function and gradient values for f. */
+ fx = fxm + stx * dgtest;
+ fy = fym + sty * dgtest;
+ dgx = dgxm + dgtest;
+ dgy = dgym + dgtest;
+ } else {
+ /*
+ Call update_trial_interval() to update the interval of
+ uncertainty and to compute the new step.
+ */
+ uinfo = update_trial_interval(
+ &stx, &fx, &dgx,
+ &sty, &fy, &dgy,
+ stp, f, &dg,
+ stmin, stmax, &brackt
+ );
+ }
+
+ /*
+ Force a sufficient decrease in the interval of uncertainty.
+ */
+ if (brackt) {
+ if (0.66 * prev_width <= fabs(sty - stx)) {
+ *stp = stx + 0.5 * (sty - stx);
+ }
+ prev_width = width;
+ width = fabs(sty - stx);
+ }
+ }
+
+ return LBFGSERR_LOGICERROR;
+}
+
+
+
+/**
+ * Define the local variables for computing minimizers.
+ */
+#define USES_MINIMIZER \
+ lbfgsfloatval_t a, d, gamma, theta, p, q, r, s;
+
+/**
+ * Find a minimizer of an interpolated cubic function.
+ * @param cm The minimizer of the interpolated cubic.
+ * @param u The value of one point, u.
+ * @param fu The value of f(u).
+ * @param du The value of f'(u).
+ * @param v The value of another point, v.
+ * @param fv The value of f(v).
+ * @param du The value of f'(v).
+ */
+#define CUBIC_MINIMIZER(cm, u, fu, du, v, fv, dv) \
+ d = (v) - (u); \
+ theta = ((fu) - (fv)) * 3 / d + (du) + (dv); \
+ p = fabs(theta); \
+ q = fabs(du); \
+ r = fabs(dv); \
+ s = max3(p, q, r); \
+ /* gamma = s*sqrt((theta/s)**2 - (du/s) * (dv/s)) */ \
+ a = theta / s; \
+ gamma = s * sqrt(a * a - ((du) / s) * ((dv) / s)); \
+ if ((v) < (u)) gamma = -gamma; \
+ p = gamma - (du) + theta; \
+ q = gamma - (du) + gamma + (dv); \
+ r = p / q; \
+ (cm) = (u) + r * d;
+
+/**
+ * Find a minimizer of an interpolated cubic function.
+ * @param cm The minimizer of the interpolated cubic.
+ * @param u The value of one point, u.
+ * @param fu The value of f(u).
+ * @param du The value of f'(u).
+ * @param v The value of another point, v.
+ * @param fv The value of f(v).
+ * @param du The value of f'(v).
+ * @param xmin The maximum value.
+ * @param xmin The minimum value.
+ */
+#define CUBIC_MINIMIZER2(cm, u, fu, du, v, fv, dv, xmin, xmax) \
+ d = (v) - (u); \
+ theta = ((fu) - (fv)) * 3 / d + (du) + (dv); \
+ p = fabs(theta); \
+ q = fabs(du); \
+ r = fabs(dv); \
+ s = max3(p, q, r); \
+ /* gamma = s*sqrt((theta/s)**2 - (du/s) * (dv/s)) */ \
+ a = theta / s; \
+ gamma = s * sqrt(max2(0., a * a - ((du) / s) * ((dv) / s))); \
+ if ((u) < (v)) gamma = -gamma; \
+ p = gamma - (dv) + theta; \
+ q = gamma - (dv) + gamma + (du); \
+ r = p / q; \
+ if (r < 0. && gamma != 0.) { \
+ (cm) = (v) - r * d; \
+ } else if (a < 0) { \
+ (cm) = (xmax); \
+ } else { \
+ (cm) = (xmin); \
+ }
+
+/**
+ * Find a minimizer of an interpolated quadratic function.
+ * @param qm The minimizer of the interpolated quadratic.
+ * @param u The value of one point, u.
+ * @param fu The value of f(u).
+ * @param du The value of f'(u).
+ * @param v The value of another point, v.
+ * @param fv The value of f(v).
+ */
+#define QUARD_MINIMIZER(qm, u, fu, du, v, fv) \
+ a = (v) - (u); \
+ (qm) = (u) + (du) / (((fu) - (fv)) / a + (du)) / 2 * a;
+
+/**
+ * Find a minimizer of an interpolated quadratic function.
+ * @param qm The minimizer of the interpolated quadratic.
+ * @param u The value of one point, u.
+ * @param du The value of f'(u).
+ * @param v The value of another point, v.
+ * @param dv The value of f'(v).
+ */
+#define QUARD_MINIMIZER2(qm, u, du, v, dv) \
+ a = (u) - (v); \
+ (qm) = (v) + (dv) / ((dv) - (du)) * a;
+
+/**
+ * Update a safeguarded trial value and interval for line search.
+ *
+ * The parameter x represents the step with the least function value.
+ * The parameter t represents the current step. This function assumes
+ * that the derivative at the point of x in the direction of the step.
+ * If the bracket is set to true, the minimizer has been bracketed in
+ * an interval of uncertainty with endpoints between x and y.
+ *
+ * @param x The pointer to the value of one endpoint.
+ * @param fx The pointer to the value of f(x).
+ * @param dx The pointer to the value of f'(x).
+ * @param y The pointer to the value of another endpoint.
+ * @param fy The pointer to the value of f(y).
+ * @param dy The pointer to the value of f'(y).
+ * @param t The pointer to the value of the trial value, t.
+ * @param ft The pointer to the value of f(t).
+ * @param dt The pointer to the value of f'(t).
+ * @param tmin The minimum value for the trial value, t.
+ * @param tmax The maximum value for the trial value, t.
+ * @param brackt The pointer to the predicate if the trial value is
+ * bracketed.
+ * @retval int Status value. Zero indicates a normal termination.
+ *
+ * @see
+ * Jorge J. More and David J. Thuente. Line search algorithm with
+ * guaranteed sufficient decrease. ACM Transactions on Mathematical
+ * Software (TOMS), Vol 20, No 3, pp. 286-307, 1994.
+ */
+static int update_trial_interval(
+ lbfgsfloatval_t *x,
+ lbfgsfloatval_t *fx,
+ lbfgsfloatval_t *dx,
+ lbfgsfloatval_t *y,
+ lbfgsfloatval_t *fy,
+ lbfgsfloatval_t *dy,
+ lbfgsfloatval_t *t,
+ lbfgsfloatval_t *ft,
+ lbfgsfloatval_t *dt,
+ const lbfgsfloatval_t tmin,
+ const lbfgsfloatval_t tmax,
+ int *brackt
+ )
+{
+ int bound;
+ int dsign = fsigndiff(dt, dx);
+ lbfgsfloatval_t mc; /* minimizer of an interpolated cubic. */
+ lbfgsfloatval_t mq; /* minimizer of an interpolated quadratic. */
+ lbfgsfloatval_t newt; /* new trial value. */
+ USES_MINIMIZER; /* for CUBIC_MINIMIZER and QUARD_MINIMIZER. */
+
+ /* Check the input parameters for errors. */
+ if (*brackt) {
+ if (*t <= min2(*x, *y) || max2(*x, *y) <= *t) {
+ /* The trival value t is out of the interval. */
+ return LBFGSERR_OUTOFINTERVAL;
+ }
+ if (0. <= *dx * (*t - *x)) {
+ /* The function must decrease from x. */
+ return LBFGSERR_INCREASEGRADIENT;
+ }
+ if (tmax < tmin) {
+ /* Incorrect tmin and tmax specified. */
+ return LBFGSERR_INCORRECT_TMINMAX;
+ }
+ }
+
+ /*
+ Trial value selection.
+ */
+ if (*fx < *ft) {
+ /*
+ Case 1: a higher function value.
+ The minimum is brackt. If the cubic minimizer is closer
+ to x than the quadratic one, the cubic one is taken, else
+ the average of the minimizers is taken.
+ */
+ *brackt = 1;
+ bound = 1;
+ CUBIC_MINIMIZER(mc, *x, *fx, *dx, *t, *ft, *dt);
+ QUARD_MINIMIZER(mq, *x, *fx, *dx, *t, *ft);
+ if (fabs(mc - *x) < fabs(mq - *x)) {
+ newt = mc;
+ } else {
+ newt = mc + 0.5 * (mq - mc);
+ }
+ } else if (dsign) {
+ /*
+ Case 2: a lower function value and derivatives of
+ opposite sign. The minimum is brackt. If the cubic
+ minimizer is closer to x than the quadratic (secant) one,
+ the cubic one is taken, else the quadratic one is taken.
+ */
+ *brackt = 1;
+ bound = 0;
+ CUBIC_MINIMIZER(mc, *x, *fx, *dx, *t, *ft, *dt);
+ QUARD_MINIMIZER2(mq, *x, *dx, *t, *dt);
+ if (fabs(mc - *t) > fabs(mq - *t)) {
+ newt = mc;
+ } else {
+ newt = mq;
+ }
+ } else if (fabs(*dt) < fabs(*dx)) {
+ /*
+ Case 3: a lower function value, derivatives of the
+ same sign, and the magnitude of the derivative decreases.
+ The cubic minimizer is only used if the cubic tends to
+ infinity in the direction of the minimizer or if the minimum
+ of the cubic is beyond t. Otherwise the cubic minimizer is
+ defined to be either tmin or tmax. The quadratic (secant)
+ minimizer is also computed and if the minimum is brackt
+ then the the minimizer closest to x is taken, else the one
+ farthest away is taken.
+ */
+ bound = 1;
+ CUBIC_MINIMIZER2(mc, *x, *fx, *dx, *t, *ft, *dt, tmin, tmax);
+ QUARD_MINIMIZER2(mq, *x, *dx, *t, *dt);
+ if (*brackt) {
+ if (fabs(*t - mc) < fabs(*t - mq)) {
+ newt = mc;
+ } else {
+ newt = mq;
+ }
+ } else {
+ if (fabs(*t - mc) > fabs(*t - mq)) {
+ newt = mc;
+ } else {
+ newt = mq;
+ }
+ }
+ } else {
+ /*
+ Case 4: a lower function value, derivatives of the
+ same sign, and the magnitude of the derivative does
+ not decrease. If the minimum is not brackt, the step
+ is either tmin or tmax, else the cubic minimizer is taken.
+ */
+ bound = 0;
+ if (*brackt) {
+ CUBIC_MINIMIZER(newt, *t, *ft, *dt, *y, *fy, *dy);
+ } else if (*x < *t) {
+ newt = tmax;
+ } else {
+ newt = tmin;
+ }
+ }
+
+ /*
+ Update the interval of uncertainty. This update does not
+ depend on the new step or the case analysis above.
+
+ - Case a: if f(x) < f(t),
+ x <- x, y <- t.
+ - Case b: if f(t) <= f(x) && f'(t)*f'(x) > 0,
+ x <- t, y <- y.
+ - Case c: if f(t) <= f(x) && f'(t)*f'(x) < 0,
+ x <- t, y <- x.
+ */
+ if (*fx < *ft) {
+ /* Case a */
+ *y = *t;
+ *fy = *ft;
+ *dy = *dt;
+ } else {
+ /* Case c */
+ if (dsign) {
+ *y = *x;
+ *fy = *fx;
+ *dy = *dx;
+ }
+ /* Cases b and c */
+ *x = *t;
+ *fx = *ft;
+ *dx = *dt;
+ }
+
+ /* Clip the new trial value in [tmin, tmax]. */
+ if (tmax < newt) newt = tmax;
+ if (newt < tmin) newt = tmin;
+
+ /*
+ Redefine the new trial value if it is close to the upper bound
+ of the interval.
+ */
+ if (*brackt && bound) {
+ mq = *x + 0.66 * (*y - *x);
+ if (*x < *y) {
+ if (mq < newt) newt = mq;
+ } else {
+ if (newt < mq) newt = mq;
+ }
+ }
+
+ /* Return the new trial value. */
+ *t = newt;
+ return 0;
+}
+
+
+
+
+
+static lbfgsfloatval_t owlqn_x1norm(
+ const lbfgsfloatval_t* x,
+ const int start,
+ const int n
+ )
+{
+ int i;
+ lbfgsfloatval_t norm = 0.;
+
+ for (i = start;i < n;++i) {
+ norm += fabs(x[i]);
+ }
+
+ return norm;
+}
+
+static void owlqn_pseudo_gradient(
+ lbfgsfloatval_t* pg,
+ const lbfgsfloatval_t* x,
+ const lbfgsfloatval_t* g,
+ const int n,
+ const lbfgsfloatval_t c,
+ const int start,
+ const int end
+ )
+{
+ int i;
+
+ /* Compute the negative of gradients. */
+ for (i = 0;i < start;++i) {
+ pg[i] = g[i];
+ }
+
+ /* Compute the psuedo-gradients. */
+ for (i = start;i < end;++i) {
+ if (x[i] < 0.) {
+ /* Differentiable. */
+ pg[i] = g[i] - c;
+ } else if (0. < x[i]) {
+ /* Differentiable. */
+ pg[i] = g[i] + c;
+ } else {
+ if (g[i] < -c) {
+ /* Take the right partial derivative. */
+ pg[i] = g[i] + c;
+ } else if (c < g[i]) {
+ /* Take the left partial derivative. */
+ pg[i] = g[i] - c;
+ } else {
+ pg[i] = 0.;
+ }
+ }
+ }
+
+ for (i = end;i < n;++i) {
+ pg[i] = g[i];
+ }
+}
+
+static void owlqn_project(
+ lbfgsfloatval_t* d,
+ const lbfgsfloatval_t* sign,
+ const int start,
+ const int end
+ )
+{
+ int i;
+
+ for (i = start;i < end;++i) {
+ if (d[i] * sign[i] <= 0) {
+ d[i] = 0;
+ }
+ }
+}
diff --git a/methods/lbfgs/lbfgs.h b/methods/lbfgs/lbfgs.h
new file mode 100644
index 0000000..7be84a7
--- /dev/null
+++ b/methods/lbfgs/lbfgs.h
@@ -0,0 +1,385 @@
+#ifndef __LBFGS_H__
+#define __LBFGS_H__
+
+#ifndef LBFGS_FLOAT
+#define LBFGS_FLOAT 64
+#endif/*LBFGS_FLOAT*/
+
+/*
+ * Activate optimization routines for IEEE754 floating point values.
+ */
+#ifndef LBFGS_IEEE_FLOAT
+#define LBFGS_IEEE_FLOAT 1
+#endif/*LBFGS_IEEE_FLOAT*/
+
+#if LBFGS_FLOAT == 32
+typedef float lbfgsfloatval_t;
+
+#elif LBFGS_FLOAT == 64
+typedef double lbfgsfloatval_t;
+
+#else
+#error "libLBFGS supports single (float; LBFGS_FLOAT = 32) or double (double; LBFGS_FLOAT=64) precision only."
+
+#endif
+
+
+/**
+ * \addtogroup liblbfgs_api libLBFGS API
+ * @{
+ *
+ * The libLBFGS API.
+ */
+
+/**
+ * Return values of lbfgs().
+ *
+ * Roughly speaking, a negative value indicates an error.
+ */
+enum {
+ /** L-BFGS reaches convergence. */
+ LBFGS_SUCCESS = 0,
+ LBFGS_CONVERGENCE = 0,
+ LBFGS_STOP,
+ /** The initial variables already minimize the objective function. */
+ LBFGS_ALREADY_MINIMIZED,
+
+ /** Unknown error. */
+ LBFGSERR_UNKNOWNERROR = -1024,
+ /** Logic error. */
+ LBFGSERR_LOGICERROR,
+ /** Insufficient memory. */
+ LBFGSERR_OUTOFMEMORY,
+ /** The minimization process has been canceled. */
+ LBFGSERR_CANCELED,
+ /** Invalid number of variables specified. */
+ LBFGSERR_INVALID_N,
+ /** Invalid number of variables (for SSE) specified. */
+ LBFGSERR_INVALID_N_SSE,
+ /** The array x must be aligned to 16 (for SSE). */
+ LBFGSERR_INVALID_X_SSE,
+ /** Invalid parameter lbfgs_parameter_t::epsilon specified. */
+ LBFGSERR_INVALID_EPSILON,
+ /** Invalid parameter lbfgs_parameter_t::past specified. */
+ LBFGSERR_INVALID_TESTPERIOD,
+ /** Invalid parameter lbfgs_parameter_t::delta specified. */
+ LBFGSERR_INVALID_DELTA,
+ /** Invalid parameter lbfgs_parameter_t::linesearch specified. */
+ LBFGSERR_INVALID_LINESEARCH,
+ /** Invalid parameter lbfgs_parameter_t::max_step specified. */
+ LBFGSERR_INVALID_MINSTEP,
+ /** Invalid parameter lbfgs_parameter_t::max_step specified. */
+ LBFGSERR_INVALID_MAXSTEP,
+ /** Invalid parameter lbfgs_parameter_t::ftol specified. */
+ LBFGSERR_INVALID_FTOL,
+ /** Invalid parameter lbfgs_parameter_t::wolfe specified. */
+ LBFGSERR_INVALID_WOLFE,
+ /** Invalid parameter lbfgs_parameter_t::gtol specified. */
+ LBFGSERR_INVALID_GTOL,
+ /** Invalid parameter lbfgs_parameter_t::xtol specified. */
+ LBFGSERR_INVALID_XTOL,
+ /** Invalid parameter lbfgs_parameter_t::max_linesearch specified. */
+ LBFGSERR_INVALID_MAXLINESEARCH,
+ /** Invalid parameter lbfgs_parameter_t::orthantwise_c specified. */
+ LBFGSERR_INVALID_ORTHANTWISE,
+ /** Invalid parameter lbfgs_parameter_t::orthantwise_start specified. */
+ LBFGSERR_INVALID_ORTHANTWISE_START,
+ /** Invalid parameter lbfgs_parameter_t::orthantwise_end specified. */
+ LBFGSERR_INVALID_ORTHANTWISE_END,
+ /** The line-search step went out of the interval of uncertainty. */
+ LBFGSERR_OUTOFINTERVAL,
+ /** A logic error occurred; alternatively, the interval of uncertainty
+ became too small. */
+ LBFGSERR_INCORRECT_TMINMAX,
+ /** A rounding error occurred; alternatively, no line-search step
+ satisfies the sufficient decrease and curvature conditions. */
+ LBFGSERR_ROUNDING_ERROR,
+ /** The line-search step became smaller than lbfgs_parameter_t::min_step. */
+ LBFGSERR_MINIMUMSTEP,
+ /** The line-search step became larger than lbfgs_parameter_t::max_step. */
+ LBFGSERR_MAXIMUMSTEP,
+ /** The line-search routine reaches the maximum number of evaluations. */
+ LBFGSERR_MAXIMUMLINESEARCH,
+ /** The algorithm routine reaches the maximum number of iterations. */
+ LBFGSERR_MAXIMUMITERATION,
+ /** Relative width of the interval of uncertainty is at most
+ lbfgs_parameter_t::xtol. */
+ LBFGSERR_WIDTHTOOSMALL,
+ /** A logic error (negative line-search step) occurred. */
+ LBFGSERR_INVALIDPARAMETERS,
+ /** The current search direction increases the objective function value. */
+ LBFGSERR_INCREASEGRADIENT,
+};
+
+/**
+ * Line search algorithms.
+ */
+enum {
+ /** The default algorithm (MoreThuente method). */
+ LBFGS_LINESEARCH_DEFAULT = 0,
+ /** MoreThuente method proposd by More and Thuente. */
+ LBFGS_LINESEARCH_MORETHUENTE = 0,
+ /**
+ * Backtracking method with the Armijo condition.
+ * The backtracking method finds the step length such that it satisfies
+ * the sufficient decrease (Armijo) condition,
+ * - f(x + a * d) <= f(x) + lbfgs_parameter_t::ftol * a * g(x)^T d,
+ *
+ * where x is the current point, d is the current search direction, and
+ * a is the step length.
+ */
+ LBFGS_LINESEARCH_BACKTRACKING_ARMIJO = 1,
+ /** The backtracking method with the defualt (regular Wolfe) condition. */
+ LBFGS_LINESEARCH_BACKTRACKING = 2,
+ /**
+ * Backtracking method with regular Wolfe condition.
+ * The backtracking method finds the step length such that it satisfies
+ * both the Armijo condition (LBFGS_LINESEARCH_BACKTRACKING_ARMIJO)
+ * and the curvature condition,
+ * - g(x + a * d)^T d >= lbfgs_parameter_t::wolfe * g(x)^T d,
+ *
+ * where x is the current point, d is the current search direction, and
+ * a is the step length.
+ */
+ LBFGS_LINESEARCH_BACKTRACKING_WOLFE = 2,
+ /**
+ * Backtracking method with strong Wolfe condition.
+ * The backtracking method finds the step length such that it satisfies
+ * both the Armijo condition (LBFGS_LINESEARCH_BACKTRACKING_ARMIJO)
+ * and the following condition,
+ * - |g(x + a * d)^T d| <= lbfgs_parameter_t::wolfe * |g(x)^T d|,
+ *
+ * where x is the current point, d is the current search direction, and
+ * a is the step length.
+ */
+ LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 3,
+};
+
+/**
+ * L-BFGS optimization parameters.
+ * Call lbfgs_parameter_init() function to initialize parameters to the
+ * default values.
+ */
+typedef struct {
+ /**
+ * The number of corrections to approximate the inverse hessian matrix.
+ * The L-BFGS routine stores the computation results of previous \ref m
+ * iterations to approximate the inverse hessian matrix of the current
+ * iteration. This parameter controls the size of the limited memories
+ * (corrections). The default value is \c 6. Values less than \c 3 are
+ * not recommended. Large values will result in excessive computing time.
+ */
+ int m;
+
+ /**
+ * Epsilon for convergence test.
+ * This parameter determines the accuracy with which the solution is to
+ * be found. A minimization terminates when
+ * ||g|| < \ref epsilon * max(1, ||x||),
+ * where ||.|| denotes the Euclidean (L2) norm. The default value is
+ * \c 1e-5.
+ */
+ lbfgsfloatval_t epsilon;
+
+ /**
+ * Distance for delta-based convergence test.
+ * This parameter determines the distance, in iterations, to compute
+ * the rate of decrease of the objective function. If the value of this
+ * parameter is zero, the library does not perform the delta-based
+ * convergence test. The default value is \c 0.
+ */
+ int past;
+
+ /**
+ * Delta for convergence test.
+ * This parameter determines the minimum rate of decrease of the
+ * objective function. The library stops iterations when the
+ * following condition is met:
+ * (f' - f) / f < \ref delta,
+ * where f' is the objective value of \ref past iterations ago, and f is
+ * the objective value of the current iteration.
+ * The default value is \c 0.
+ */
+ lbfgsfloatval_t delta;
+
+ /**
+ * The maximum number of iterations.
+ * The lbfgs() function terminates an optimization process with
+ * ::LBFGSERR_MAXIMUMITERATION status code when the iteration count
+ * exceedes this parameter. Setting this parameter to zero continues an
+ * optimization process until a convergence or error. The default value
+ * is \c 0.
+ */
+ int max_iterations;
+
+ /**
+ * The line search algorithm.
+ * This parameter specifies a line search algorithm to be used by the
+ * L-BFGS routine.
+ */
+ int linesearch;
+
+ /**
+ * The maximum number of trials for the line search.
+ * This parameter controls the number of function and gradients evaluations
+ * per iteration for the line search routine. The default value is \c 20.
+ */
+ int max_linesearch;
+
+ /**
+ * The minimum step of the line search routine.
+ * The default value is \c 1e-20. This value need not be modified unless
+ * the exponents are too large for the machine being used, or unless the
+ * problem is extremely badly scaled (in which case the exponents should
+ * be increased).
+ */
+ lbfgsfloatval_t min_step;
+
+ /**
+ * The maximum step of the line search.
+ * The default value is \c 1e+20. This value need not be modified unless
+ * the exponents are too large for the machine being used, or unless the
+ * problem is extremely badly scaled (in which case the exponents should
+ * be increased).
+ */
+ lbfgsfloatval_t max_step;
+
+ /**
+ * A parameter to control the accuracy of the line search routine.
+ * The default value is \c 1e-4. This parameter should be greater
+ * than zero and smaller than \c 0.5.
+ */
+ lbfgsfloatval_t ftol;
+
+ /**
+ * A coefficient for the Wolfe condition.
+ * This parameter is valid only when the backtracking line-search
+ * algorithm is used with the Wolfe condition,
+ * ::LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE or
+ * ::LBFGS_LINESEARCH_BACKTRACKING_WOLFE .
+ * The default value is \c 0.9. This parameter should be greater
+ * the \ref ftol parameter and smaller than \c 1.0.
+ */
+ lbfgsfloatval_t wolfe;
+
+ /**
+ * A parameter to control the accuracy of the line search routine.
+ * The default value is \c 0.9. If the function and gradient
+ * evaluations are inexpensive with respect to the cost of the
+ * iteration (which is sometimes the case when solving very large
+ * problems) it may be advantageous to set this parameter to a small
+ * value. A typical small value is \c 0.1. This parameter shuold be
+ * greater than the \ref ftol parameter (\c 1e-4) and smaller than
+ * \c 1.0.
+ */
+ lbfgsfloatval_t gtol;
+
+ /**
+ * The machine precision for floating-point values.
+ * This parameter must be a positive value set by a client program to
+ * estimate the machine precision. The line search routine will terminate
+ * with the status code (::LBFGSERR_ROUNDING_ERROR) if the relative width
+ * of the interval of uncertainty is less than this parameter.
+ */
+ lbfgsfloatval_t xtol;
+
+ /**
+ * Coeefficient for the L1 norm of variables.
+ * This parameter should be set to zero for standard minimization
+ * problems. Setting this parameter to a positive value activates
+ * Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) method, which
+ * minimizes the objective function F(x) combined with the L1 norm |x|
+ * of the variables, {F(x) + C |x|}. This parameter is the coeefficient
+ * for the |x|, i.e., C. As the L1 norm |x| is not differentiable at
+ * zero, the library modifies function and gradient evaluations from
+ * a client program suitably; a client program thus have only to return
+ * the function value F(x) and gradients G(x) as usual. The default value
+ * is zero.
+ */
+ lbfgsfloatval_t orthantwise_c;
+
+ /**
+ * Start index for computing L1 norm of the variables.
+ * This parameter is valid only for OWL-QN method
+ * (i.e., \ref orthantwise_c != 0). This parameter b (0 <= b < N)
+ * specifies the index number from which the library computes the
+ * L1 norm of the variables x,
+ * |x| := |x_{b}| + |x_{b+1}| + ... + |x_{N}| .
+ * In other words, variables x_1, ..., x_{b-1} are not used for
+ * computing the L1 norm. Setting b (0 < b < N), one can protect
+ * variables, x_1, ..., x_{b-1} (e.g., a bias term of logistic
+ * regression) from being regularized. The default value is zero.
+ */
+ int orthantwise_start;
+
+ /**
+ * End index for computing L1 norm of the variables.
+ * This parameter is valid only for OWL-QN method
+ * (i.e., \ref orthantwise_c != 0). This parameter e (0 < e <= N)
+ * specifies the index number at which the library stops computing the
+ * L1 norm of the variables x,
+ */
+ int orthantwise_end;
+} lbfgs_parameter_t;
+
+
+/**
+ * Callback interface to provide objective function and gradient evaluations.
+ *
+ * The lbfgs() function call this function to obtain the values of objective
+ * function and its gradients when needed. A client program must implement
+ * this function to evaluate the values of the objective function and its
+ * gradients, given current values of variables.
+ *
+ * @param instance The user data sent for lbfgs() function by the client.
+ * @param x The current values of variables.
+ * @param g The gradient vector. The callback function must compute
+ * the gradient values for the current variables.
+ * @param n The number of variables.
+ * @param step The current step of the line search routine.
+ * @retval lbfgsfloatval_t The value of the objective function for the current
+ * variables.
+ */
+typedef lbfgsfloatval_t (*lbfgs_evaluate_t)(
+ void *instance,
+ const lbfgsfloatval_t *x,
+ lbfgsfloatval_t *g,
+ const int n,
+ const lbfgsfloatval_t step
+ );
+
+/**
+ * Callback interface to receive the progress of the optimization process.
+ *
+ * The lbfgs() function call this function for each iteration. Implementing
+ * this function, a client program can store or display the current progress
+ * of the optimization process.
+ *
+ * @param instance The user data sent for lbfgs() function by the client.
+ * @param x The current values of variables.
+ * @param g The current gradient values of variables.
+ * @param fx The current value of the objective function.
+ * @param xnorm The Euclidean norm of the variables.
+ * @param gnorm The Euclidean norm of the gradients.
+ * @param step The line-search step used for this iteration.
+ * @param n The number of variables.
+ * @param k The iteration count.
+ * @param ls The number of evaluations called for this iteration.
+ * @retval int Zero to continue the optimization process. Returning a
+ * non-zero value will cancel the optimization process.
+ */
+typedef int (*lbfgs_progress_t)(
+ void *instance,
+ const lbfgsfloatval_t *x,
+ const lbfgsfloatval_t *g,
+ const lbfgsfloatval_t fx,
+ const lbfgsfloatval_t xnorm,
+ const lbfgsfloatval_t gnorm,
+ const lbfgsfloatval_t step,
+ int n,
+ int k,
+ int ls
+ );
+
+#endif
+
diff --git a/methods/lbfgs/lbfgs.hpp b/methods/lbfgs/lbfgs.hpp
new file mode 100644
index 0000000..112d50e
--- /dev/null
+++ b/methods/lbfgs/lbfgs.hpp
@@ -0,0 +1,169 @@
+#ifndef BFGS_METHOD
+#define BFGS_METHOD
+#define OPT_HEADER
+#include <core/optimizer.hpp>
+//#include <blitz/array.h>
+#include <limits>
+#include <cstdlib>
+#include <core/opt_traits.hpp>
+#include "../linmin/linmin.hpp"
+#include <math/num_diff.hpp>
+#include <cassert>
+#include <cmath>
+#include <ctime>
+#include <vector>
+#include <algorithm>
+#include "lbfgs.h"
+#include "lbfgs.cpp"
+/*
+ *
+*/
+#include <iostream>
+using std::cerr;
+using std::endl;
+
+namespace opt_utilities
+{
+
+ template<typename rT,typename pT>
+ lbfgsfloatval_t lbfgs_adapter(
+ void *instance,
+ const lbfgsfloatval_t *x,
+ lbfgsfloatval_t *g,
+ const int n,
+ const lbfgsfloatval_t step
+ )
+ {
+ pT px;
+ resize(px,n);
+ for(int i=0;i<n;++i)
+ {
+ set_element(px,i,x[i]);
+ }
+
+ lbfgsfloatval_t result=((func_obj<rT,pT>*)instance)->eval(px);
+ pT grad(gradient(*static_cast<func_obj<rT,pT>*>(instance),px));
+ for(int i=0;i<n;++i)
+ {
+ g[i]=get_element(grad,i);
+ }
+ return result;
+ }
+
+
+
+ template <typename rT,typename pT>
+ class lbfgs_method
+ :public opt_method<rT,pT>
+ {
+ public:
+ typedef pT array1d_type;
+ typedef rT T;
+ private:
+ func_obj<rT,pT>* p_fo;
+ optimizer<rT,pT>* p_optimizer;
+
+ //typedef blitz::Array<rT,2> array2d_type;
+
+
+ private:
+ array1d_type start_point;
+ array1d_type end_point;
+
+ private:
+ rT threshold;
+ private:
+ rT func(const pT& x)
+ {
+ assert(p_fo!=0);
+ return p_fo->eval(x);
+ }
+
+
+ public:
+ lbfgs_method()
+ :threshold(1e-4)
+ {}
+
+ virtual ~lbfgs_method()
+ {
+ };
+
+ lbfgs_method(const lbfgs_method<rT,pT>& rhs)
+ :p_fo(rhs.p_fo),p_optimizer(rhs.p_optimizer),
+ start_point(rhs.start_point),
+ end_point(rhs.end_point),
+ threshold(rhs.threshold)
+ {
+ }
+
+ lbfgs_method<rT,pT>& operator=(const lbfgs_method<rT,pT>& rhs)
+ {
+ threshold=rhs.threshold;
+ p_fo=rhs.p_fo;
+ p_optimizer=rhs.p_optimizer;
+ opt_eq(start_point,rhs.start_point);
+ opt_eq(end_point,rhs.end_point);
+ }
+
+ opt_method<rT,pT>* do_clone()const
+ {
+ return new lbfgs_method<rT,pT>(*this);
+ }
+
+ void do_set_start_point(const array1d_type& p)
+ {
+ start_point.resize(get_size(p));
+ opt_eq(start_point,p);
+
+ }
+
+ array1d_type do_get_start_point()const
+ {
+ return start_point;
+ }
+
+ void do_set_precision(rT t)
+ {
+ threshold=t;
+ }
+
+ rT do_get_precision()const
+ {
+ return threshold;
+ }
+
+ void do_set_optimizer(optimizer<rT,pT>& o)
+ {
+ p_optimizer=&o;
+ p_fo=p_optimizer->ptr_func_obj();
+ }
+
+
+
+ pT do_optimize()
+ {
+ lbfgs_parameter_t param;
+ lbfgs_parameter_init(&param);
+ param.ftol=threshold;
+ std::vector<lbfgsfloatval_t> buffer(get_size(start_point));
+ for(int i=0;i<buffer.size();++i)
+ {
+ buffer[i]=get_element(start_point,i);
+ }
+ lbfgsfloatval_t fx;
+ lbfgs(get_size(start_point),&buffer[0],&fx,
+ lbfgs_adapter<rT,pT>,0,p_fo,&param);
+ for(int i=0;i<buffer.size();++i)
+ {
+ set_element(start_point,i,buffer[i]);
+ }
+ return start_point;
+ }
+ };
+
+}
+
+
+#endif
+//EOF